
ERM FRANCE
ERM FRANCE
8 Projects, page 1 of 2
Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2025Partners:Orsted Hydrogen Netherlands Holding B.V., ITM POWER (TRADING) LIMITED, STIESDAL HYDROGEN A/S, Ørsted, STIESDAL HYDROGEN A/S +9 partnersOrsted Hydrogen Netherlands Holding B.V.,ITM POWER (TRADING) LIMITED,STIESDAL HYDROGEN A/S,Ørsted,STIESDAL HYDROGEN A/S,EE FR,SGRE-DK,ITM POWER (TRADING) LIMITED,Ørsted,Orsted Hydrogen Netherlands Holding B.V.,EE FR,ERM FRANCE,Siemens Wind Power,ERM FRANCEFunder: European Commission Project Code: 101007168Overall Budget: 5,423,840 EURFunder Contribution: 4,999,840 EURThe OYSTER project will lead to the development and demonstration of a marinized electrolyser designed for integration with offshore wind turbines. Stiesdal will work with the world’s largest offshore wind developer (Ørsted) and a leading wind turbine manufacturer (Siemens Gamesa Renewable Energy) to develop and test in a shoreside pilot trial a MW-scale fully marinized electrolyser. The findings will inform studies and design exercises for full-scale systems that will include innovations to reduce costs while improving efficiency. To realise the potential of offshore hydrogen production there is a need for compact electrolysis systems that can withstand harsh offshore environments and have minimal maintenance requirements while still meeting cost and performance targets that will allow production of low-cost hydrogen. The project will provide a major advance towards this aim. Preparation for further offshore testing of wind-hydrogen systems will be undertaken, and results from the studies will be disseminated in a targeted way to help advance the sector and prepare the market for deployment at scale. The OYSTER project partners share a vision of hydrogen being produced from offshore wind at a cost that is competitive with natural gas (with a realistic carbon tax), thus unlocking bulk markets for green hydrogen (heat, industry, and transport), making a meaningful impact on CO2 emissions, and facilitating the transition to a fully renewable energy system in Europe. This project is a key first step on the path to developing a commercial offshore hydrogen production industry and will lead to innovations with significant exploitation potential within Europe and beyond.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d39d0a3c55958fe7f35db3675ae82076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::d39d0a3c55958fe7f35db3675ae82076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2028Partners:LHYFE, EDP CNET, FRAMES ENERGY SYSTEMS B.V. PLUG SYSTEM SOLUTIONS, STROHM BV, EDP CNET +12 partnersLHYFE,EDP CNET,FRAMES ENERGY SYSTEMS B.V. PLUG SYSTEM SOLUTIONS,STROHM BV,EDP CNET,DWR-eco GmbH,POM LIMBURG,CEA,STROHM BV,ALFA LAVAL COPENHAGEN A/S,POM LIMBURG,ERM FRANCE,DWR-eco GmbH,FRAMES ENERGY SYSTEMS B.V. PLUG SYSTEM SOLUTIONS,LHYFE,ALFA LAVAL COPENHAGEN A/S,ERM FRANCEFunder: European Commission Project Code: 101111899Overall Budget: 40,287,400 EURFunder Contribution: 20,000,000 EURHydrogen Offshore Production for Europe (HOPE) intents to pave the way for the deployment of large-scale offshore hydrogen production. To this aim, HOPE will design, build and operate the first offshore hydrogen production demonstrator of 10MW by 2025 in an offshore test zone near the port of Oostende in Belgium. The two-years demonstration of a mid-scale concept on a retrofitted jack-up barge will prove the technical and commercial sustainability of renewable offshore hydrogen production, export by pipelines and supply to end-clients onshore. It will also provide an extensive experience to assess the feasibility of 300MW and 500MW offshore concepts. The experience gathered by the consortium members and the maturity levels reached at the end of the project will enable the deployment of commercial large-scale solutions as soon as 2028. HOPE gathers a unique consortium of European players with cutting-edge expertise across the whole hydrogen value chain: an offshore wind power developer, a renewable hydrogen producer, an electrolyser manufacturer, a desalination solutions manufacturer, an offshore hydrogen pipes manufacturer, a research centre, a regional development agency, a strategic consultancy and a renewables communication agency. HOPE will produce a large range of exploitable results including not only detailed designs of replicable offshore hydrogen technologies, operational data and resulting analyses from a first-of-a-kind project but also pre-feasibility studies and techno-economic assessments of two large-scale concepts. Through an ambitious dissemination and exploitation plan, the consortium intends to accelerate the deployment of large-scale offshore hydrogen solutions to contribute to reach the 10 Mt of clean hydrogen produced in Europe by 2030 to decarbonize the European economy and reach our climate goals.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f74eefda5343097640f484d5988fc7a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::f74eefda5343097640f484d5988fc7a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2029Partners:FIAP, ERM FRANCE, CNH Industrial (Czechia), WIRTSCHAFTSKAMMER OESTERREICH, WIRTSCHAFTSKAMMER OESTERREICH +13 partnersFIAP,ERM FRANCE,CNH Industrial (Czechia),WIRTSCHAFTSKAMMER OESTERREICH,WIRTSCHAFTSKAMMER OESTERREICH,VOLVO,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,VOLVO,IVECO,NATIONAL UNION OF ROAD HAULIERS FROM ROMANIA,TB AG,FIAP,NATIONAL UNION OF ROAD HAULIERS FROM ROMANIA,TB AG,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,SINTEF AS,ERM FRANCE,SINTEF ASFunder: European Commission Project Code: 101101446Overall Budget: 110,961,000 EURFunder Contribution: 29,991,500 EUR150 trucks from three European truck OEMs, the Volvo Group, Daimler AG and IVECO will be deployed across eight EU member states. Each company, will develop and deploy 41-44 tonne articulated trucks which are specified for the longest haul operation (ranges over 600km). The trucks will be deployed with over 20 truck operators and operate in a wide range conditions and day-to-day operations across 8 European member states. The trucks will operate on a new network of high throughput hydrogen refuelling stations, designed specifically for trucks (installed by Shell, OMV, TOTAL, Everfuel and Linde). These will be installed to cover the major TEN-T transport corridors from North to South Europe, with an initial focus on the regions where the vehicles are manufactured (to enable the high level of on-road support that the OEMs’ customers rely on). The stations will be supplied using green hydrogen from a network of 8 new large electrolysers producing green hydrogen consistent with RED II requirements, with associated Guarantees of Origin. The project will create an extensive technical, economic and attitudinal dataset which proves the viability of hydrogen as a solution to decarbonising road freight. This will be analysed by research partners, SINTEF, VTT and Element Energy to create easily interpreted public report on the performance of the fleet. The results will be disseminated to an audience of: policy makers (to encourage policy change to favour hydrogen truck deployment), truck operators (to enable future uptake) and the wider hydrogen industry (to underpin supply chain investment). These activities will contribute to accelerating the rate and scale of uptake of hydrogen fuelled vehicles in Europe, preparing the policy, fuelling network and end user acceptance for the first series production of these OEM vehicles (at the scale of 1,000’s per year per OEM) from as early as 2026 and full industrialisation (10,000’s per year per OEM) around 2030.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::acc069db824807da9dcda131fb1bcdc2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::acc069db824807da9dcda131fb1bcdc2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2021 - 2026Partners:ITM LINDE ELECTROLYSIS, ITM POWER (TRADING) LIMITED, SHELL DEUTSCHLAND GMBH, LINDE AG, ERM FRANCE +15 partnersITM LINDE ELECTROLYSIS,ITM POWER (TRADING) LIMITED,SHELL DEUTSCHLAND GMBH,LINDE AG,ERM FRANCE,TECNALIA,CONCAWE IVZW,LINDE AG,EE FR,SINTEF AS,ITM LINDE ELECTROLYSIS,EE FR,SINTEF AS,CONCAWE IVZW,ERM FRANCE,ITM POWER,ITM POWER,TECNALIA,ITM POWER (TRADING) LIMITED,SHELL DEUTSCHLAND GMBHFunder: European Commission Project Code: 101036970Overall Budget: 148,956,000 EURFunder Contribution: 32,431,600 EURREFHYNE II will install a 100MW PEM electrolyser at Rheinland refinery in Cologne, Germany, using renewable power to produce green hydrogen and oxygen, which will be fed-in to the existing refinery networks to decarbonise refinery operations. The electrolyser will be based on a state of the art 5MW PEM stack integrated into pre-engineered 20MW electrolyser trains, with factory assembled balance of plant to reduce the amount of bespoke work required to integrate electrolysers into new sites. The project will be delivered by the same team responsible for the REFHYNE project that has installed a 10MW PEM electrolyser at the same site, exploiting the experience of the consortium to deliver a timely and cost-effective project. REFHYNE II will achieve a viable business case for large-scale electrolysis at refineries by valorising the hydrogen and oxygen streams in the refinery and receiving RED credits for the hydrogen produced, while minimising the cost of hydrogen through improvements in efficiency and capital cost. A research task will explore the upgrading of waste heat to higher temperatures for use in the refinery, to further improve the business case. Power will be sourced through novel PPAs with named renewable plants. Emissions avoidance will be achieved by displacing the hydrogen currently produced on-site through SMR and adapting the refinery to allow the electrolyser to act as a flexible load and hence contract direct with renewable generators, to increase renewable penetration into the grid. Research work packages will support the deployment of 100MW+ scale electrolysers at refineries and industrial sites across Europe and enable GW-scale electrolysis systems to be implemented. Finally, a thorough dissemination work package will exploit the results of the project by delivering key messages to target audiences, and supporting three fast follower sites (of which at least two will be located in EU13 countries) to rapidly replicate the results of the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::0bffc8aeee78b78abdd6d6844d7c8346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::0bffc8aeee78b78abdd6d6844d7c8346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2021Partners:HSLU, SOLIDPOWER SPA, BTT, European Association for the Promotion of Cogeneration, LUCERNE UNIVERSITY OF APPLIED SCIENCES AND ARTS +26 partnersHSLU,SOLIDPOWER SPA,BTT,European Association for the Promotion of Cogeneration,LUCERNE UNIVERSITY OF APPLIED SCIENCES AND ARTS,BTT,SENERTEC KRAFT-WARME ENERGIESYSTEME GMBH,Element Energy,DTU,VIESSMANN WERKE,European Association for the Promotion of Cogeneration,VAILLANT GMBH,ERM FRANCE,VAILLANT GMBH,EWE AG,VIESSMANN WERKE,HEXIS AG,SENERTEC KRAFT-WARME ENERGIESYSTEME GMBH,ERM FRANCE,BDR Thermea Group B.V.,EE FR,Sunfire (Germany),BDR Thermea Group B.V.,SOLIDPOWER SPA,Viessmann Climate Solutions SE,HEXIS AG,EE FR,EWE AG,Sunfire (Germany),Viessmann Climate Solutions SE,Element EnergyFunder: European Commission Project Code: 700339Overall Budget: 84,462,096 EURFunder Contribution: 33,932,800 EURPACE is a major initiative aimed at ensuring the European mCHP sector makes the next move to mass market commercialisation. The project will deploy a total of 2,650 new fuel cell microCHP units with real customers and monitor them for an extended period. This will: - Enable fuel cell mCHP manufacturers to scale up production, using new series techniques, and increased automation. By 2018, four leading European manufacturers (Bosch, SOLIDpower, Vaillant and Viessmann) will have installed capacity for production of over 1,000 units/year (each will install over 500 units in PACE). These production lines will test the manufacturing techniques which will allow for mass market scale up and the reductions in unit cost which will come from associated economies of scale. - Allow the deployment of new innovations in fuel cell microCHP products, which reduce unit cost by over 30%, increase stack lifetime to over 10 years (by end of the project) and improve the electrical efficiency of all units. - Create a large dataset of the performance of the units, which will demonstrate the readiness of fuel cell mCHP as a mass market product. This will prove that fuel cell mCHP can be a leading contributor to reducing primary energy consumption and GHG emissions across Europe. - Allow the units in the trial to be pooled in a large scale test of the concept of aggregating and controlling the output from mCHP to act as a virtual power plant. This will be achieved in a project run by EWE on a section of the German grid earmarked for smart grid trials. - Act as the basis for an effort to standardise mCHP products in Europe, helping create a more efficient market for both installers and component suppliers. The project will provide an evidence base which will be used in a dissemination campaign targeting policy makers (who can provide supportive policies for the next wave of mCHP roll-out) and increasing awareness of the technology within the domestic heating sector (main route to market).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e91d017746b87311ba76e6c5d6d204f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::e91d017746b87311ba76e6c5d6d204f1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu