Powered by OpenAIRE graph
Found an issue? Give us feedback

DELPHI AUTOMOTIVE SYSTEMS LUXEMBOURG SA

Country: Luxembourg

DELPHI AUTOMOTIVE SYSTEMS LUXEMBOURG SA

6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 652816
    Overall Budget: 23,370,500 EURFunder Contribution: 16,705,000 EUR

    In order to realize sustainable mobility in Europe, both urban and long distance vehicles for road transport will have to be significantly more efficient by 2020+ and a considerable contribution will have to come from the energy efficiency improvement of the powertrain. Moreover, together with the progressive efficiency increase coming from the engine technology evolution, the use of Low-Carbon Alternative Fuels, such as Natural Gas, will play a fundamental role to accelerate the process of decarbonization of the transportation sector that in Europe is targeted for the 2050 time horizon. In this context, being well-known the benefits of the Natural Gas Vehicles adoption in Europe, this proposal aims to exploit the main benefits of gas-powered engines developing CNG-only, mono-fuel-engines able to comply with: • post Euro 6 noxious emissions • 2020+ CO2 emissions targets • new homologation cycle and Real Driving conditions and simultaneously improving engine efficiency and vehicle performance also with regard to its CNG range capability. These engines, based on new combustion processes, require also dedicated technological solutions for: • Innovative injection, ignition and boosting system concepts • Advanced exhaust gas aftertreatment system • Detecting the gas-quality and its composition The results obtained from the experimental activities on the demonstration vehicles and engines will be harmonized and analysed throughout a final overall assessment of the different approaches. The demonstrator vehicles will be assessed in terms of performance and emissions with regard to NEDC, WLTP and under real driving conditions. Moreover, the final assessment of the vehicles will be certified, as “independent testing”, by JRC (Joint Research Centre) which will carry out additional measurements in their own testing facilities both on chassis dyno and by means of PEMS (Portable Emissions Measurement System).

    more_vert
  • Funder: European Commission Project Code: 636380
    Overall Budget: 12,581,300 EURFunder Contribution: 9,973,900 EUR

    The overall objective of the REWARD project is to develop the knowhow, intellectual property rights and technical capabilities to adequately and cost-effectively produce cleaner, highly efficient Diesel powertrains and aftertreatment technologies for future cleaner class A, B, C, D and E passenger cars and light commercial vehicles (LCVs) up to 3,500 kg that “go beyond Euro 6 limits under Real Driving conditions” (EU6 RDE). All technologies: friction and wear reduction measures, exhaust gas treatment concepts, fuel-efficient 2-stroke and 4-stroke Diesel engine concepts will be advanced to TRL 6 or TRL 7 and integrated in three demonstration vehicles. A full calibration and assessment of the vehicles and underlying technologies will take place to proof: real driving emissions below upcoming Euro 6 limits, 25% friction reduction in the entire engine, a significant higher lifetime durability and a more than 5% improved overall fuel efficiency. The impact of the cost effectiveness and high yield producibility of the applications will also be demonstrated. Specific scientific and technical objectives, main innovations and targeted key results are: 1. To develop and demonstrate advanced exhaust gas treatment concepts and low emission technologies up to TRL 7 2. To develop and demonstrate advanced friction and wear reduction measures up to TRL 6/7 3. To develop and demonstrate advanced > 5% more fuel-efficient 0.7 l 2-stroke Diesel engines (TRL6) suited for class A/B passenger cars 4. To develop and demonstrate advanced > 5% more fuel-efficient 4-stroke Diesel engines (TRL7) suited for class B, C D and E passenger cars and LCVs REWARD’s aim is to develop all key technologies up to TRL6 i.e. system/subsystem model or prototype demonstration in a relevant environment and to TRL7, i.e. system prototype demonstration in an operational environment. REWARD will also prepare a plan for a credible path to deliver the innovations to the market.

    more_vert
  • Funder: European Commission Project Code: 234161
    more_vert
  • Funder: European Commission Project Code: 675676
    Overall Budget: 3,857,730 EURFunder Contribution: 3,857,730 EUR

    Development of fuel injection equipment (FIE) able to reduce pollutant emissions from liquid-fueled transportation and power generation systems is a top industrial priority in order to meet the forthcoming EU 2020 emission legislations. However, design of new FIE is currently constrained by the incomplete physical understanding of complex micro-scale processes, such as in-nozzle cavitation, primary and secondary atomization. Unfortunately, today’s computing power does not allow for an all-scale analysis of these processes. The proposed program aims to develop a large eddy simulation (LES) CFD model that will account for the influence of unresolved sub-grid-scale (SGS) processes to engineering scales at affordable computing time scales. The bridging parameter between SGS and macro-scales flow processes is the surface area generation/destruction occurring during fuel atomisation; relevant SGS closure models will be developed through tailored experiments and DNS and will be implemented into the LES model predicting the macroscopic spray development as function of the in-nozzle flow and surrounding air conditions. Validation of the new simulation tool, currently missing from today’s state-of-the-art models, will be performed against new benchmark experimental data to be obtained as part of the programme, in addition to those provided by the industrial partners. This will demonstrate the applicability of the model as an engineering design tool suitable for IC engines, gas turbines, fuel burners and even rocket engine fuel injectors. The proposed research and training programme will be undertaken by 15ESRs funded by the EU and one ESR funded independently from an Australian partner; ESRs will be recruited/seconded by universities, research institutes and multinational fuel injection and combustion systems manufacturers that will represent in the best possible way the international, interdisciplinary and intersectoral requirements of the Marie Curie Action guidelines.

    more_vert
  • Funder: European Commission Project Code: 218447
    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.