
DNW
21 Projects, page 1 of 5
assignment_turned_in Project2015 - 2016Partners:DNW, DNWDNW,DNWFunder: European Commission Project Code: 632601All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::512d7015ea8c2ffe12a286109046ae89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::512d7015ea8c2ffe12a286109046ae89&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2012Partners:DNW, DNWDNW,DNWFunder: European Commission Project Code: 323543All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::96c13b5aac052964b33143afe0423dca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::96c13b5aac052964b33143afe0423dca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2026Partners:DNW, ITP, SKF AEROSPACE FRANCE, UPM, TU Darmstadt +8 partnersDNW,ITP,SKF AEROSPACE FRANCE,UPM,TU Darmstadt,SKF AEROSPACE FRANCE,DNW,FUNDACION CENTRO DE TECNOLOGIAS AERONAUTICAS,DLR,ROLLS-ROYCE DEUTSCHLAND LTD & CO KG,ITP,CENTA,ROLLS-ROYCE DEUTSCHLAND LTD & CO KGFunder: European Commission Project Code: 101102004Overall Budget: 35,639,800 EURFunder Contribution: 29,906,000 EURClimate-neutral aviation will require the use of alternative fuels such as Green Hydrogen and Sustainable Aviation Fuel (SAF) combined with the power density of an ultra-efficient gas turbine engine for the Short and Medium Range (SMR) aircraft market which corresponds to approximately 50% of the current share of air transport emissions. Rolls-Royce (represented within the HEAVEN project by RR-UK & RR-D) supported by key UK and European academia, industry and research centres are currently developing a new generation of very high bypass ratio geared engine architecture called UltraFan® which was started in 2014. From the beginning this ducted engine architecture has been designed to be scalable and meet the needs both of widebody and SMR markets. To achieve the necessary 20% fuel burn reduction Rolls-Royce proposes to significantly evolve the UltraFan design. The evolved engine architecture design will take the next steps in improving the efficiency of the gas turbine, take advantage of the properties of net zero carbon fuels such as Hydrogen to improve efficiency, combining this with Hybrid electric technology to reduce wasted energy. Numerous innovative enabling technologies already at TRL3 will be incorporated into this new architecture to improve the gas turbine efficiency. Together with work on Hydrogen in CAVENDISH (HRA-01) and Hybrid Electric in HE-ART (HER-01) Clean Aviation projects in conjunction with activities in national and regional programmes, this will be synergistically combined to validate up to TRL6 the highly innovative UltraFan design to support a 2035 EIS. HEAVEN brings together a highly specialised European industrial and academic consortium already strongly involved and familiar with the UltraFan programme. Additionally, the partner easyJet, European airline operator who have the largest fleet of European manufactured SMR aircraft operating in Europe, will bring an in depth knowledge of operational requirements and impact in this market.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::7dadf30057b59eaa93db4b953d480790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::7dadf30057b59eaa93db4b953d480790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:NLR, NLR, DNW, DNW, CAPGEMINI ENGINEERING DEUTSCHLAND SAS & CO KG +4 partnersNLR,NLR,DNW,DNW,CAPGEMINI ENGINEERING DEUTSCHLAND SAS & CO KG,ADSE,University of Twente,DEHARDE MASCHINENBAU HELMUT HOFFMAN GMBH,CAPGEMINI ENGINEERING DEUTSCHLAND SAS & CO KGFunder: European Commission Project Code: 831810Overall Budget: 3,346,400 EURFunder Contribution: 3,346,400 EURThe TRINIDAT project adresses the aerodynamic characterization of an already available intake geometry (as supplied by ITD) and optimization of the intake performance by using CFD based optimization tools leading to redesigned high performance intake shapes to be implemented on the Next Generation Civil Tilt Rotor (NGCTR) configuration. A purpose of the optimization is to improve the flow steadiness and uniformity at the Air Intake Plane of the engines such as to comply with the requirements put forward by the engine manufacturer. The initial characterization and optimization will rely on dedicated CFD studies, the final validation will be made with full size model tests in DNW-LLF 6x6 wind tunnel, allowing reliable testing at full scale Mach and Reynolds conditions. For efficient testing of basic and optimized left hand and right hand intake geometries in airplane, helicopter and intermediate Extreme Short Take-Off and Landing mode, a modular wind tunnel model equipped with a remotely controlled tilting forward nacelle part will be designed and manufactured. A remotely controlled highly instrumented rotatable rake will be installed in the model to enable detailed and efficient measurement of the flow at the engine air intake plane. Apart from the aerodynamic optimization of the intakes, the project will also identify icing and snow conditions to be considered for certification and will subsequently analyse the ice and snow effects on the nacelle inlets and ducts to provide early input for anti icing measures that might be needed for NGCTR. The partners of the consortium, gathering renowned Research Centres (NLR, DNW), 2 Industrials (Deharde, ALTRAN), 1 SME (ADSE) and 1 University (UT), will use their complementary expertise and facilities to provide an optimized inlet geometry for NGCTR, based on CFD and wind tunnel analysis, with high potential for certification in snow/icing conditions. The TRINIDAT project will last 36 months for a total budget of 3,346,397€.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::917306d1cddc436a8fe2d7ea8a8c8919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::917306d1cddc436a8fe2d7ea8a8c8919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2022Partners:IBK-Innovation (Germany), Unisa, DNW, Dream Innovation SRL, DNW +2 partnersIBK-Innovation (Germany),Unisa,DNW,Dream Innovation SRL,DNW,Dream Innovation SRL,IBK-Innovation (Germany)Funder: European Commission Project Code: 831809Overall Budget: 1,476,050 EURFunder Contribution: 1,476,050 EURAccording to the requirements of the topic JTI-CS2-2018-CFP08-REG-03-01, the proposal ESTRO will produce experimental and numerical data in flow speed and in “cruise conditions” to validate the relevant aerodynamic performance of the Regional 90 sit turboprop A/C wing including laminar flow extension measurements and wing span load distribution. In particular, the tests in wind tunnel conditions will be performed at some Reynolds numbers, whose higher value is expected to be around 11 millions, and at low and cruise Mach numbers. Accurate pressure distributions, infrared flow images, wing deformation, wall balance and load control and alleviation measurements are expected. The data will be the result of an experimental test campaign performed in a Laminar transonic Wind tunnel with the main objective to evaluate the laminar flow robustness, the aerodynamic performances and load control effectiveness of a turboprop A/C wing at high/medium speeds (Mach numbers up to 0.67) and wind tunnel Reynolds number around 10-11 million. Numerical simulations aim to first assess the wind tunnel experimental results and then to extrapolate the data to flight conditions. In addition, the effects of the propeller on the wing laminar flow extension will be evaluated through 3D boundary layer computations coupled to linear stability analyses based on ray theory.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c1d2778146564fcc97397dd63e9e3674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c1d2778146564fcc97397dd63e9e3674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right