Powered by OpenAIRE graph
Found an issue? Give us feedback

Argonne National Laboratory

Argonne National Laboratory

29 Projects, page 1 of 6
  • Funder: UK Research and Innovation Project Code: EP/D067049/1
    Funder Contribution: 364,632 GBP

    This proposal aims to investigate a range of perovskite structured thin films using a combination of Raman spectroscopy, in-situ transmission electron microscopy and synchrotron X-radiation in order to determine how constraint controls the onset and temperature dependence of octahedral tilt transitions in thin films and ensuing domain structure. It is anticpated that this will give a greater understanding of how constraint influences functional properties in ferroelectric and dielectric thin layers. The proposal will concentrate on three key systems in which tilt transitions are known to influence macroscopic properties; PbZrxTi(1-x)O3, Ag(Nb,Ta)O3 and the newly discovered (1-x)BiMeO3-xPbTiO3 solid solutions. The proposal is joint between University of Sheffield, Pennsylvania State University and Argonne National Laboratory. The latter will submit an independent National Science Foundation proposal which directly compliments the work proposed here. The programme is for 4 years at the request of the National Science Foundation, USA.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015110/1
    Funder Contribution: 4,040,800 GBP

    The Scottish Doctoral Training Centre in Condensed Matter Physics, known as the CM-DTC, is an EPSRC-funded Centre for Doctoral Training (CDT) addressing the broad field of Condensed Matter Physics (CMP). CMP is a core discipline that underpins many other areas of science, and is one of the Priority Areas for this CDT call. Renewal funding for the CM-DTC will allow five more annual cohorts of PhD students to be recruited, trained and released onto the market. They will be highly educated professionals with a knowledge of the field, in depth and in breadth, that will equip them for future leadership in a variety of academic and industrial careers. Condensed Matter Physics research impacts on many other fields of science including engineering, biophysics, photonics, chemistry, and materials science. It is a significant engine for innovation and drives new technologies. Recent examples include the use of liquid crystals for displays including flat-screen and 3D television, and the use of solid-state or polymeric LEDs for power-saving high-illumination lighting systems. Future examples may involve harnessing the potential of graphene (the world's thinnest and strongest sheet-like material), or the creation of exotic low-temperature materials whose properties may enable the design of radically new types of (quantum) computer with which to solve some of the hardest problems of mathematics. The UK's continued ability to deliver transformative technologies of this character requires highly trained CMP researchers such as those the Centre will produce. The proposed training approach is built on a strong framework of taught lecture courses, with core components and a wide choice of electives. This spans the first two years so that PhD research begins alongside the coursework from the outset. It is complemented by hands-on training in areas such as computer-intensive physics and instrument building (including workshop skills and 3D printing). Some lecture courses are delivered in residential schools but most are videoconferenced live, using the well-established infrastructure of SUPA (the Scottish Universities Physics Alliance). Students meet face to face frequently, often for more than one day, at cohort-building events that emphasise teamwork in science, outreach, transferable skills and careers training. National demand for our graduates is demonstrated by the large number of companies and organisations who have chosen to be formally affiliated with our CDT as Industrial Associates. The range of sectors spanned by these Associates is notable. Some, such as e2v and Oxford Instruments, are scientific consultancies and manufacturers of scientific equipment, whom one would expect to be among our core stakeholders. Less obviously, the list also represents scientific publishers, software houses, companies small and large from the energy sector, large multinationals such as Solvay-Rhodia and Siemens, and finance and patent law firms. This demonstrates a key attraction of our graduates: their high levels of core skills, and a hands-on approach to problem solving. These impart a discipline-hopping ability which more focussed training for specific sectors can complement, but not replace. This breadth is prized by employers in a fast-changing environment where years of vocational training can sometimes be undermined very rapidly by unexpected innovation in an apparently unrelated sector. As the UK builds its technological future by funding new CDTs across a range of priority areas, it is vital to include some that focus on core discipline skills, specifically Condensed Matter Physics, rather than the interdisciplinary or semi-vocational training that features in many other CDTs. As well as complementing those important activities today, our highly trained PhD graduates will be equipped to lay the foundations for the research fields (and perhaps some of the industrial sectors) of tomorrow.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M011054/1
    Funder Contribution: 434,711 GBP

    The coastal zone plays a crucial part in addressing two of the most pressing issues facing humanity: energy supply and water resources. Marine renewable energy and desalination are both characterised by the deployment of relatively small-scale technology (for example, tidal turbines, or desalination plant outfalls) in large-scale ocean flows. Understanding the multi-scale interactions between sub-metre scale installations and ocean currents over tens of kilometres is crucial for assessing environmental impacts, and for optimisation to minimise project costs or maximise profits. The vast range of scales and physical processes involved, and the need to optimise complex coupled systems, represent highly daunting software development and computational challenges. Geographically, the UK is uniquely positioned to become a world leader in marine renewable energy, but adequate software will be a key factor in determining the success of this new industry. To address this need, this project will re-engineer a unique CFD to marine scale modelling package to provide performance-portability, future-proofing and substantially increased capabilities. To motivate this we will target two applications: renewable energy generation via tidal turbine arrays and dense water discharge from desalination plants. Both are characterised by a common wide range of spatial and temporal scales, the need for design optimisation and accurate impact assessments, and a current lack of the required software. This project will build upon several world-leading open source software projects from the assembled multi-disciplinary research team. This team already has a long and successful track record of working together on the development of high quality open source software which is able to exploit large-scale high performance computing and has been used widely in academia and industry. In addition, the project has assembled a wide range of suitable project partners to aid in the delivery of the project as well as to promote longer term impact. These include complementary centres of excellence in cutting-edge software development, industry leaders in the targeted application areas, marine consultancies, and those contributing to environmental regulation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J003557/1
    Funder Contribution: 646,399 GBP

    Multiferroics and magnetoelectrics are materials that develop a ferroelectric polarization in a magnetic state, either spontaneously or in a magnetic field. Because they can in principle convert electric into magnetic signals, it has been proposed that they could be used as key components in a new generation of information storage and processing devices, alternative and better than the familiar magnetic (e.g., hard disks) and ferroelectric (e.g., smart-card chips) storage media. A true renaissance in the field was triggered by the discovery of a new class of multiferroics, in which magnetism and ferroelectricity are tightly coupled. However, after almost a decade of research, no material has yet emerged as a viable candidate for applications, since the observed effects are weak and generally restricted to low temperatures. Here, we propose to explore at the fundamental level a number of novel concepts, which depart in a radical way from the thoroughly-explored `cycloidal magnetism' paradigm. In particular, we will attempt to unlock the potential of the strongest of the mageto-electric interactions, the so-called `exchange striction' effect. In contrast to the weaker effects mostly considered so far, obtaining electrical polarisation from exchange striction requires an exquisite control of the crystal symmetry and of the magnetic interactions at the atomic level. We propose to employ an innovative research methodology, which combines conventional measurements of electrical and magnetic properties, `imaging' of the spins and electric dipoles at different length-scales, from atomic to macroscopic, and state-of-the-art ab-initio theoretical calculations of the static and dynamic properties of these systems, both at low temperatures and at room temperature. The breakthrough we seek is a new microscopic "working principle" that can be deployed to perfect practical multiferroics and magnetoelectrics materials. Our new approach, which strongly emphasizes the interface between theory and experiments, will also pave the way for similar studies on related classes of materials, with applications in information storage, energy conversion and storage and many others.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G003092/2
    Funder Contribution: 390,563 GBP

    Magnetism in materials is one of the oldest scientific discoveries, but is still far from being completely understood. I am proposing to use new and, as yet, completely unexploited experimental techniques to learn about materials where the magnetic interactions act to make the magnetic state stable; but only just stable! This means that small changes in the environment can cause dramatic changes in the magnetic properties. I propose to investigate these effects with muons. These are subatomic particles that may be implanted into materials where they act as microscopic magnetometers. In a solid, the atoms interact with each other through electrostatic forces between the electrons attached to the atoms. These forces are short range, so an atom is only on speaking terms with it neighbours. Electrons have a property known as spin, which is best thought of as an arrow attached to each electron. At high temperatures the spins on are randomly aligned, but as we reduce the temperature the electrostatic interactions cause the spins to line up with those of their neighbours. Amazingly, short range forces act to make all of the spins in the solid align. From local atoms speaking only to their neighbours, we have created collective action in the form of long-range order. Long-range order is seen throughout nature and the theory of such order explains the clustering of galaxies, the distribution of earthquakes, the spread of disease and even the very existence of the universe itself. A crucial factor in magnetism is the way in which interactions pass information (like line up spins this way'') between atoms. There may be situations where the interactions only act along a line of atoms (one-dimension) or in a plane of atoms (two-dimensions). This dimensionality is at the root of the behaviour of all long-range ordered systems. This is far from being a theoretical abstraction - it is possible to make 1D and 2D materials in the laboratory. Here, molecules are often employed as the building blocks of the materials rather than individual atoms. These molecular magnets are self assembled nanostructures, formed from networks of magnetic metal atoms which are linked together using organic molecules. The great number of organic molecules allow us to make small changes to the structure of magnets leading to tailor made materials with desired properties.Another important class of magnet results when messages sent to an atom conflict, a phenomenon known as frustration . If each atom is receiving conflicting instructions as to which direction is should align, it is not obvious which it will obey. It is therefore difficult to predict the ground state of the system (that is, the state adopted at very low temperatures). The investigation of such systems provide insights into why materials adopt the states that they do. Why should a certain material be a ferromagnet while another stays disordered down to low temperature? We can even gain an insight into why the solid state itself is stable.I propose to carry out research into frustrated and low-dimensional materials using muons. These are a subatomic particle that may be implanted in a material in order to measure the internal magnetic field. Investigations with muons reveal properties invisible to other, more conventional, experimental techniques. Both frustrated and low-dimensional materials tend to exist at the edges of stability, so that small changes in their external environment lead to dramatic changes in their behaviour. This means that experiments where small perturbations are applied to on of these magnets tend to yield much interesting information about their behaviour. New experimental techniques have recently been developed where perturbations may be applied and simultaneous measurements made with muons. These, as yet, have been completely unexploited in front line research and it is their first deployment that forms the basis of my work.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.