
Int Maize and Wheat Improvement Ctr
Int Maize and Wheat Improvement Ctr
2 Projects, page 1 of 1
assignment_turned_in Project2007 - 2012Partners:Int Maize and Wheat Improvement Ctr, International Maize and Wheat Improvement Center, National Inst of Agricultural Botany, Int Maize and Wheat Improvement Ctr, National Institute of Agricultural BotanyInt Maize and Wheat Improvement Ctr,International Maize and Wheat Improvement Center,National Inst of Agricultural Botany,Int Maize and Wheat Improvement Ctr,National Institute of Agricultural BotanyFunder: UK Research and Innovation Project Code: BB/E006868/1Funder Contribution: 646,318 GBPFor the future, plant-based processes offer sustainable solutions to many of the nutritional, health and environmental challenges that face humankind. The UK has an extremely strong and vibrant plant science research community with many internationally competitive research groups based in the universities and institutes. Whilst their discoveries have the potential to impact on the key sustainability issues such as the supply of high quality nutritious food, response to climate change and identifying sources of bioenergy, it is evident that translation to successful outcomes suffers from the lack of an effective delivery mechanism to end users. It is against this backdrop that NIAB is investing £1.25 million over 5 years to establish a Centre for Pre-Breeding that will provide a product conferring capability available to all UK researchers and end-users. The Centre will develop a unique platform for delivery of novel traits and associated marker technologies in wheat, oilseed rape, pulses and selected non-food crop applications. Trait genes and markers will be validated in pre-competitive, UK adapted germplasm that can be accessed by commercial breeders and end-users in the non-food area. The Centre will not produce finished varieties and hence won't compete with commercial breeders. NIAB's investment will be used to establish infrastructure and initiate longer-term pre-breeding activities. Funding from this initiative is sought to support pre-breeding in two key areas that address key targets in sustainability of the wheat crop in the UK. Firstly, we will exemplify the translation of a research breakthrough in publicly funded science to practical outcome. The wheat gene Ppd uses day length as a cue to determine when the plant flowers. It is a key adaptability gene; breeders can use variants of the gene to produce varieties that match local environments. An early flowering variety is better suited to hot dry summers where it is important to fill grain before water is scarce and temperatures soar. Conversely, a delay in flowering sustains yield in cooler and wetter summers, such as those generally experienced in the UK, with a longer period suitable for grain filling. The Laurie group at the John Innes Centre has recently identified three Ppd genes in wheat. In the research proposed here, we will provide the molecular markers for these genes and important new data on their developmental effects. Importantly, there is more to this work than simply accelerating the breeding process; new Ppd variants and flowering time genes will be identified and characterised. This novel variation will be fundamental in providing alternative genes that breeders can exploit to tune flowering in varieties in response to global warming and climate change. Secondly, we will establish a platform for introducing novel variation across a range of wheat traits based on exploitation of a collection of synthetic wheats from the International Centre for Maize and Wheat Improvement (CIMMYT) in Mexico. The conventional view is that the genetic base for wheat improvement in the UK and Europe is very narrow. Synthetic wheats address this issue as they recreate the rare hybridisations that gave rise to the progenitors of our modern bread wheats but dramatically increase genetic diversity by using a range of parents. NIAB will initiate a crossing programme with selected synthetic wheats and varieties from CIMMYT that have a synthetic origin. The objective is to deliver pre-breeding materials to commercial breeders that provide novel traits in key sustainability targets such as novel pathogen and insect pest resistance, biomass and yield potential and tolerance to drought. This work will be undertaken in close collaboration with UK industry facilitated by the British Wheat Breeders and the HGCA and represents the open 'public-private partnership' that will define how the pre-breeding Centre at NIAB operates across all crop targets.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bf881e3ae28865417d30079b40459e1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::bf881e3ae28865417d30079b40459e1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2010Partners:NTU, Agricultural Development Advisory Service (United Kingdom), ADAS, Centro International de Mejoramiento, Int Maize and Wheat Improvement Ctr +6 partnersNTU,Agricultural Development Advisory Service (United Kingdom),ADAS,Centro International de Mejoramiento,Int Maize and Wheat Improvement Ctr,CPB Twyfords,CPB Twyfords,Int Maize and Wheat Improvement Ctr,University of Nottingham,RSK ADAS Ltd,KWS (United Kingdom)Funder: UK Research and Innovation Project Code: BB/D008972/1Funder Contribution: 347,943 GBPMost major changes in UK wheats, such as the introduction of dwarfing genes (which reduced plant height, but increased the yield) have been introduced from wide crosses. Wide crosses can still be used to introduce new genes which allow further major changes to be made in UK wheats. The proposal presented here will introduce new genes conferring longer ear rachis (= axis of the ear) associated with improved ear fertility from Mexican wheats (from CIMMYT) which could facilitate a quantum leap in overall yield in UK wheats. The material to test this has already been produced. Specifically, we have created a population of lines from a cross between the Mexican 'big-ear' line and a productive (highly efficient at turning sunlight into sugar) UK adapted wheat, Rialto. In a preliminary study, we have shown rachis length to be positively correlated with ear fertility (and grain number per unit land area). This proposal asks for funds to look at why the Mexican wheat produces more grain for each ear than UK wheat and whether we can use the same genes to improve UK wheat yields. The programme works with UK plant breeders from CPB-Twyford Ltd to produce wheat pre-breeding lines containing these new genes from the Mexican material. For breeders to introduce novel traits into elite UK varieties, they must first know which genes are responsible for controlling the traits and how they work to cause differences between varieties. So, we will map the genes controlling ear fertility and in doing so develop genetic markers to facilitate their selection in breeding programmes. The weather and environmental conditions can vary considerably between different countries and genes that may be useful in some countries may not be in others. We plan to carry out physiological experiments which would identify why the Mexican wheat has more grains in each ear and how this might help improve wheat yield in the UK varieties. We will also carry out experiments to examine whether these genes influence other important determinants of yield at the crop level, such as ear number and grain weight. Crucially, there should be added benefits due to the high photosynthetic ability of Rialto combined with more fertile ears in the 'big-ear' line. We already have seed from the crosses which are needed to do this work, but need funding to understand how wheat controls the number of grains produced per ear. Our industrial partner will use their breeding expertise to make new lines suited to UK breeding, and we will help develop these lines and also use these lines to help us understand the genetics of how many grains are produced per ear. Using this combined approach we will then identify a pool of candidate genes which may directly influence this trait.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::585cb0f3cb57cf3cb772a322154cb221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::585cb0f3cb57cf3cb772a322154cb221&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu