Powered by OpenAIRE graph
Found an issue? Give us feedback

HEIDELBERG MATERIALS ITALIA CEMENTI SPA

Country: Italy

HEIDELBERG MATERIALS ITALIA CEMENTI SPA

7 Projects, page 1 of 2
  • Funder: European Commission Project Code: 696656
    Overall Budget: 89,000,000 EURFunder Contribution: 89,000,000 EUR

    This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.

    more_vert
  • Funder: European Commission Project Code: 641185
    Overall Budget: 9,976,420 EURFunder Contribution: 8,778,700 EUR

    The European cement industry has committed itself to contributing to climate protection measures and therefore to curbing its CO2 emissions. CO2 capture technologies, although an essential part of all CO2 reduction scenarios, are not yet ready for large-scale deployment in the cement industry. Hence, the primary objective of CEMCAP is To prepare the ground for large-scale implementation of CO2 capture in the European cement industry To achieve this objective, CEMCAP will - Leverage to TRL 6 for cement plants the oxyfuel capture technology and three fundamentally different post combustion capture technologies, all of them with a targeted capture rate of 90%. - Identify the CO2 capture technologies with the greatest potential to be retrofitted to existing cement plants in a cost- and resource-effective manner, maintaining product quality and environmental compatibility. - Formulate a techno-economic decision-basis for CO2 capture implementation in the cement industry, where the current uncertainty regarding CO2 capture cost is reduced by at least 50%. For successful large-scale deployment of CO2 capture in the cement industry, technologies must be developed beyond the current state of the art. In order to bring the most high-potential retrofittable CO2 capture technologies to a higher TRL level and closer to implementation, CEMCAP will - Describe the routes for the development required to close technology gaps for CO2 capture from cement and assist technology suppliers along the related innovation chains. - Identify and follow up minimum five potential innovations springing from CEMCAP research. Technologies suitable for CO2 capture retrofit are focused on in CEMCAP, because cement plants typically have a lifetime of as long as 30-50 years. However, the results from CEMCAP will enable looking beyond this horizon. Therefore, CEMCAP will - Create pathways for the low to near-zero CO2 emission cement production of the future.

    more_vert
  • Funder: European Commission Project Code: 785219
    Overall Budget: 88,000,000 EURFunder Contribution: 88,000,000 EUR

    This proposal describes the third stage of the EC-funded part of the Graphene Flagship. It builds upon the results achieved in the ramp-up phase (2013 - 2016) and the first core project (2016 - 2018), and covers the period April 2018 - March 2020. The progress of the flagship follows the general plans set out in the Framework Partnership Agreement, and the second core project represents an additional step towards higher technology and manufacturing readiness levels. The Flagship is built upon the concept of value chains, one of which is along the axis of materials-components-systems; the ramp-up phase placed substantial resources on the development of materials production technologies, the first core project moved to emphasise components, and the second core project will move further towards integrating components in larger systems. This evolution is manifested, e.g., in the introduction of six market-motivated spearhead projects during the Core 2 project.

    more_vert
  • Funder: European Commission Project Code: 764816
    Overall Budget: 9,237,850 EURFunder Contribution: 8,972,200 EUR

    Calcium looping (CaL) is one of the most promising technologies for CO2 capture in cement plants. The process comprises two basic steps: (1) “carbonation” of CaO to form CaCO3 in a reactor operating around 650°C; (2) oxyfuel calcination in a reactor operating at 920-950°C, which makes the CaO available again and generates a gas stream of nearly-pure CO2. The CLEANKER project aims at demonstrating at TRL7 the CaL concept in a configuration highly integrated with the cement production process, making use of entrained flow reactors. The highly integrated configuration allows achieving high energy efficiencies, with CO2 capture efficiency over 90%. The adoption of entrained flow gas-solid reactors is particularly suitable - and familiar - to the cement industry. The core activity of the project is the design, construction and operation of a CaL demonstration system comprising the entrained-flow carbonator (the CO2 absorber) and the entrained-flow oxyfuel calciner (the sorbent regenerator). This demonstration system will capture the CO2 from a portion of the flue gas of the cement plant in Vernasca (Italy) operated by Buzzi Unicem, using as CO2 sorbent the same raw meal used for clinker production. Other activities will include: (i) screening of different raw meals to assess their properties as CO2 sorbent, (ii) reactors and process modelling, (iii) scale-up study, (iv) economic analysis, (v) life cycle assessment, (vi) CO2 transport, storage and utilization study (vii) demonstration of the complete value chain, including mineral carbonation of waste ash with the CO2 captured at Vernasca; (viii) exploitation study for the demonstration of the technology at TRL>7 and for its first commercial exploitation based on CO2 transport and storage opportunities.

    more_vert
  • Funder: European Commission Project Code: 881603
    Overall Budget: 150,000,000 EURFunder Contribution: 150,000,000 EUR

    This proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.