Powered by OpenAIRE graph
Found an issue? Give us feedback

FHA

FUNDACION PARA EL DESARROLLO DE LAS NUEVAS TECNOLOGIAS DEL HIDROGENO EN ARAGON
Country: Spain
39 Projects, page 1 of 8
  • Funder: European Commission Project Code: 779606
    Overall Budget: 6,770,250 EURFunder Contribution: 4,999,950 EUR

    European cities can become living lab for the demonstration of Fuel cell and hydrogen technologies, starting from their use in niche, but everyday applications such as temporary gensets that are used in construction sites, music festivals and temporary events. .Leveraging EU excellent knowledge from consortium partners in FC application for automotive and telecom backup power solutions, EVERYWH2ERE project will integrate already demonstrated robust PEMFC stacks and low weight intrinsecallty safe pressurized hydrogen technologies into easy to install, easy to transport FC based transportable gensets. 8 FC containerd “plug and play”gensets will be realized and tested through a pan-European demonstration campaign in a demonstration to market approach.The prototypes will be tested in construction sites, music festivals and urban public events all around Europe, demonstrating their flexibility and their.enlarged lifetime. Demonstration results will be capitalized towards the redaction of three replicability studies for the use of the gensets in new contexts (emergency and reconstruction sites, ships cold ironing in harbors, mining industrial sites) and for the definition of a commercial roadmap and suitable business model for the complete marketability of the gensets within 2025. A detailed logistic and environmental analysis will be performed in order to study the complete techno-economic viability of the gensets and a decision support tool will be realized to support end-users in future replicability. According to the crucial role of cities to promote through policies and dedicated regulatory framework the spreading of FC gensets, local authorities will be involved in the project since its beginning. A strong dissemination and communication campaign will be conducted particularly during "demonstration events" (more than 25 festivals involved) in order to increase public audience awareness about FCH technologies.

    more_vert
  • Funder: European Commission Project Code: 278824
    more_vert
  • Funder: European Commission Project Code: 101015960
    Overall Budget: 5,604,960 EURFunder Contribution: 5,604,960 EUR

    SPOTLIGHT’s key objective is to develop and validate a photonic device and chemical process concept for the sunlight-powered conversion of CO2 and green H2 to the chemical fuel methane (CH4, Sabatier process), and to carbon monoxide (CO, reverse water gas shift process) as starting material for production of the chemical fuel methanol (CH3OH). Both CH4 and CH3OH are compatible with our current infrastructure, and suited for multiple applications such as car fuel, energy storage, and starting material for the production of valuable chemicals. SPOTLIGHT’s photonic device will comprise a transparent flow reactor, optimized for light incoupling in the catalyst bed. Furthermore, it will comprise secondary solar optics to concentrate natural sunlight and project it onto the reactor, and an energy efficient LED light source to ensure continuous 24/7 operation. SPOTLIGHT’s catalysts will be plasmonic catalysts, capable of absorbing the entire solar spectrum. The space-time-yield achieved to date with these catalysts in the Sabatier and rWGS process are > 104 times higher than for conventional semiconductor catalysts. This makes the concept technically feasible for scale up without excessive land use, and makes it economically much more attractive because of strongly reduced capital expenditures. SPOTLIGHT’s photonic device and process concept are perfectly suited for CO2 sources up to 1 Mt p.a., which makes them complementary to existing large scale CCU processes. For the EU, we estimate that the annual CO2 reduction through use of SPOTLIGHT’s technology is maximized to 800 Mt, which is approximately 18% of the current annual total. This could generate an amount of CH4 produced in the EU which equals 14.5 EJ of energy, corresponding to 21% of the EU’s current annual energy use, and representing a value of € 393 bil. Ergo, SPOTLIGHT’s technology reduces the dependence of the EU on non-EU countries for its energy supply, and initiates a new multi-billion industry.

    more_vert
  • Funder: European Commission Project Code: 736351
    Overall Budget: 7,736,680 EURFunder Contribution: 2,932,550 EUR

    The main aim of project Demo4Grid is the commercial setup and demonstration of a technical solution utilizing “above state of the art” Pressurized Alkaline Electrolyser (PAE) technology for providing grid balancing services in real operational and market conditions. In order to validate existing significant differences in local market and grid requirements Demo4Grid has chosen to setup a demonstration site in Austria to demonstrate a viable business case for the operation of a large scale electrolyser adapted to specific local conditions that will be found throughout Europe. To achieve that, Demo4Grid will demonstrate at this demo site with particular needs for hydrogen as a means of harvesting RE production: I. a technical solution to meet all core requirements for providing grid balancing services with a large scale PAE in direct cooperation with grid operators, II. a market based solution to provide value added services and revenues for the operation strategy to achieve commercial success providing grid services and those profits obtained also from the hydrogen application. III. Aiming at the exploitation of the results after the project ends, Demo4Grid will assess the replicability and viability of various business cases Demo4Grid will be the decisive demonstration stage of previous FCH-JU projects related to the PAE addressed in this proposal. The first project ELYGRID (finished) and the following one ELYntegration (still ongoing) have provided promising results on the development of PAE to provide grid services operating under dynamic profiles (significant results will be shown in this proposal).

    more_vert
  • Funder: European Commission Project Code: 826193
    Overall Budget: 2,500,000 EURFunder Contribution: 2,500,000 EUR

    The aim of the HyTunnel-CS project is to perform pre-normative research for safety of hydrogen driven vehicles and transport through tunnels and similar confined spaces (FCH-04-1-2018). The main ambition is to facilitate hydrogen vehicles entering underground traffic systems at risk below or the same as for fossil fuel transport. The specific objectives are: critical analysis of effectiveness of conventional safety measures for hydrogen incidents; generation of unique experimental data using the best European hydrogen safety research facilities and three real tunnels; understanding of relevant physics to underpin the advancement of hydrogen safety engineering; innovative explosion and fire prevention and mitigation strategies; new validated CFD and FE models for consequences analysis; new engineering correlations for novel quantitative risk assessment methodology tailored for tunnels and underground parking; harmonised recommendations for intervention strategies and tactics for first responders; recommendations for inherently safer use of hydrogen vehicles in underground transportation systems; recommendations for RCS. The objectives will be achieved by conducting inter-disciplinary and inter-sectoral research by a carefully built consortium of academia, emergency services, research and standard development organisations, who have extensive experience from work on hydrogen safety and safety in tunnels and other confined spaces. The complementarities and synergies of theoretical, numerical and experimental research will be used to close knowledge gaps and resolve technological bottlenecks in safe use of hydrogen in confined spaces. The project outcomes will be reflected in appropriate recommendations, models and correlations could be directly implemented in relevant RCS (UN GTR#13, ISO/TC 197, CEN/CLC/TC 6, etc.). HyTunnel-CS will reduce over-conservatism, increase efficiency of installed safety equipment and systems to save costs of underground traffic systems.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.