Powered by OpenAIRE graph
Found an issue? Give us feedback

The Faraday Institution

The Faraday Institution

11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/S003053/1
    Funder Contribution: 100,912,000 GBP

    Summary The battery is the most important component of electric vehicles, determining performance, range, vehicle packaging, cost and vehicle lifetime. The automotive industry is a UK success story, employing 814,000 people and turning over £77.5bn per year. The UK is home to Europe's largest automotive battery and EV manufacturer. Our automotive industry is committed to the transition from the internal combustion engine to electric vehicles, preserving and expanding jobs and prosperity. The UK will not succeed if it has to rely on Asian or US supply chains for batteries. It will not succeed by simply catching up with today's lithium batteries. We must leapfrog current technology by carrying out more effectively and at scale basic research in batteries and then translating it more seamlessly into innovation and manufacture. This is the ambition of the Faraday Challenge, announced and funded by government, with its three elements: the Faraday Institution (research), Innovate UK (development) and the Advanced Propulsion Centre (industrialisation). The Faraday Institution, in particular, must invest in the UK science and engineering base so that it drives innovation, delivering leading edge battery technology for Britain. We propose to establish the Faraday Institute headquarters (FIHQ) as an independent organization, based at Harwell, the centre of UK science, and with a satellite office at the National Battery Manufacturing Development Facility once completed. It will not belong to any University or group of universities, nor be aligned with particular companies. It will be a UK resource. The FIHQ will be governed by an independent board drawn from academia, industry and independents. It will contain an Expert Panel bringing together in one organisation the UK knowledge base in batteries. The Expert Panel will translate industrial needs for better batteries into specific research challenges and scope calls for proposals from the University sector to carry out research to meet these challenges. It will support intellectual leadership to the Research Projects within the universities, review the projects, advise the board on allocation and reallocation of resources and stop/start of projects. Dedicated personnel will work to ensure research with the greatest scope for exploitation is transferred to innovation and ultimately manufacture. Intellectual property will be owned by the universities but pooled, forming a portfolio of battery IP with a value greater than the sum of its parts. The headquarters will run a training programme. This will include are PhD cluster with the students placed in the universities alongside the FI Research Projects but also with a strong cohort ethos across the Faraday institution. Training for industry and government will be a strong element of the FIHQ activities. . By carrying out strategic research in batteries as a nationally managed portfolio and with greater scale and focus, we will not only enhance the quality and capacity of UK battery research, but also establish the UK as the go to place for leading battery technology. By doing so we will supporting the future UK manufacturing industry, jobs and prosperity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z531091/1
    Funder Contribution: 11,748,800 GBP

    Co-created and delivered with industry, REWIRE will accelerate the UK's ambition for net zero by transforming the next generation of high voltage electronic devices using wide/ultra-wide bandgap (WBG/UWBG) compound semiconductors. Our application-driven, collaborative research programme and training will advance the next generation of semiconductor power device technologies to commercialisation and enhance the security of the UK's semiconductor supply-chain. Power devices are at the centre of all power electronic systems. WBG/UWBG compound semiconductor devices pave the way for more efficient and compact power electronic systems, reducing energy loss at the power systems level. The UK National Semiconductor Strategy recognises advances in these technologies and the technical skills required for their development and manufacture as essential to supporting the growing net zero economy. REWIRE's philosophy is centred on cycles of use cases co-created with industry and stakeholders, meeting market needs for devices with increased voltage ranges, maturity and reliability. We will develop multiple technologies in parallel from a range of initial TRL to commercialisation. Initial work will focus on three use cases co-developed with industry, for transformative next generation WBG/UWBG semiconductor power electronic devices: (1) Wind energy, HVDC networks (>10 kV) - increased range high voltage devices as the basis for enabling more efficient power conversion and more compact power converters; (2) High temperature applications, device and packaging - greatly expanded application ranges for power electronics; (3) Tools for design, yield and reliability - improving the efficiency of semiconductor device manufacture. These use cases will: improve higher TRL Silicon Carbide (SiC) 1-2kV technology towards higher voltages; advance low TRL devices such as Gallium Oxide (Ga2O3) and Aluminium Gallium Nitride (AlGaN), diamond and cubic Boron Nitride (c-BN) towards demonstration and ultimately commercialisation; and develop novel heterogenous integration techniques, either within a semiconductor chip or within a package, for enhanced functionality. Use cases will have an academic and industry lead, fostering academia-industry co-development across different work packages. These initial, transformative REWIRE technologies will have wide-ranging applications. They will enhance the efficient conversion of electricity to and from High Voltage Direct Current (HVDC) for long-distance transfer, enabling a sustainable national grid with benefits including more reliable and secure communication systems. New technologies will also bring competitive advantage to the UK's strategically important electric vehicle and battery sectors, through optimised efficiency in charging, performance, energy conversion and management. New use cases will be co-developed throughout REWIRE, with our >30 industrial and policy partners who span the full semiconductor device supply chain, to meet stakeholder priorities. Through engagement with suppliers, manufacturers, and policymakers, REWIRE will pioneer advances in semiconductor supply chain management, developing supply chain tools for stakeholders to improve understanding of the dynamics of international trade, potential supply disruptions, and pricing volatilities. These tools and our Supply Chain Resilience Guide will support the commercialisation of technologies from use cases, enabling users to make informed decisions to enhance resilience, sustainability, and inclusion. Equity, Diversity, and Inclusivity (EDI) are integral to REWIRE's ambitions. Through extensive collaboration across the academic and industrial partners, we will build the diverse, skilled workforce needed to accelerate innovation in academia and industry, creating resilient UK businesses and supply chains.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S029575/1
    Funder Contribution: 18,062,800 GBP

    The UK energy system is changing rapidly. Greenhouse gas emissions fell by 43% between 1990 and 2017, and renewables now account for 30% of electricity generation. Despite this progress, achieving emissions reductions has been difficult outside the electricity sector, and progress could stall without more effective policy action. The Paris Agreement means that the UK may have to go further than current targets, to achieve a net zero energy system. Reducing emissions is not the only important energy policy goal. Further, progress need to be made whilst minimising the costs to consumers and taxpayers; maintaining high levels of energy security; and maximising economic, environmental and social benefits. There is a clear need for research to understand the nature of the technical, economic, political, environmental and societal dynamics affecting the energy system - including the local, national and international components of these dynamics. This proposal sets out UKERC's plans for a 4th phase of research and engagement (2019-2024) that addresses this challenge. It includes a programme of interdisciplinary research on sustainable future energy systems. This is driven by real-world energy challenges whilst exploring new questions, methods and agendas. It also explains how UKERC's central activities will be developed further, including new capabilities to support energy researchers and decision-makers. The UKERC phase 4 research programme will focus on new challenges and opportunities for implementing the energy transition, and will be concerned with the three main questions: - How will global, national and local developments influence the shape and pace of the UK's transition towards a low carbon energy system? - What are the potential economic, political, social and environmental costs and benefits of energy system change, and how can they be distributed equitably? - Which actors could take the lead in implementing the next stage of the UK's energy transition, and what are the implications for policy and governance? To address these questions, the research programme includes seven interrelated research themes: UK energy in a global context; Local and regional energy systems; Energy, environment, and landscape; Energy infrastructure transitions; Energy for mobility; Energy systems for heat; and Industrial decarbonisation. The proposal sets out details of research within these themes, plans for associated PhD studentships and details of the flexible research fund that will be used to commission additional research projects, scoping studies and to support integration. A first integration project on energy and the economy will be undertaken at the start of UKERC phase 4. The research themes are complemented by four national capabilities that form part of the research programme: an expanded Technology and Policy Assessment (TPA) capability; a new Energy Modelling Hub; the UKERC Energy Data Centre; and a new Public Engagement Observatory. Research within TPA and the Observatory will align and integrate with the main research themes. These four capabilities will also enhance UKERC's ability to provide evidence, data and expertise for academic, policy, industry and other stakeholder communities. The UKERC headquarters (HQ) team will support the management and co-ordination of the research programme; and will also undertake a range of other functions to support the broader UK energy research community and its key stakeholders. These functions include promoting networking and engagement between stakeholders in academia, policy, industry and third sector (including through a networking fund), supporting career development and capacity building, and enhancing international collaboration (including through the UK's participation in the European Energy Research Alliance).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W029235/1
    Funder Contribution: 383,920 GBP

    Breakthroughs in battery technologies are critically needed to enable the widespread adoption of electric vehicles and the grid-scale storage of renewable energy. Solid-state batteries using a lithium (Li) metal anode are rapidly emerging and promise greater range and charging speeds, as well as improved safety. However, dendrite formation almost universally compromises such cells, and they quickly fail under realistic operating conditions. Only inorganic glassy solid electrolyes (SEs) have shown the exceptional ability to "template" stable Li plating/stripping at relevant rates. However, these SEs remain underexplored as they require high-cost, low-throughput vacuum deposition techniques that are incompatible with large-scale battery production. The aim of this research proposal is to engineer a new family of scalable "templating layers" to enable high-rate solid-state batteries. Taking inspiration from vacuum-deposited SEs -- namely the homogeneous, non-crystalline (glass) structure, electrically insulating nature and very flat morphology of the SE used -- we will use low temperature, solution-based techniques that can realise these key attributes and be easily scaled-up to industrially relevant levels. A major challenge in engineering glassy materials stems from their inherent disorder, meaning the critical relationships between atomic structure, electrochemical properties and processing usually remain elusive. A suite of advanced characterisation methods, including X-ray scattering, thermal desorption spectroscopy and operando imaging, will uncover new design rules that span materials to devices. The outputs of this study will be invaluable for the study of disordered functional coatings and have wide impact in energy storage, especially to related battery chemistries, microelectronics and sensing applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S514901/1
    Funder Contribution: 3,349,820 GBP

    Doctoral Training Partnerships: a range of postgraduate training is funded by the Research Councils. For information on current funding routes, see the common terminology at www.rcuk.ac.uk/StudentshipTerminology. Training grants may be to one organisation or to a consortia of research organisations. This portal will show the lead organisation only.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.