Powered by OpenAIRE graph
Found an issue? Give us feedback

SYGIC AS

Country: Slovakia
2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 671623
    Overall Budget: 3,115,250 EURFunder Contribution: 3,115,250 EUR

    Energy-efficient heterogeneous supercomputing architectures need to be coupled with a radically new software stack capable of exploiting the benefits offered by the heterogeneity at all the different levels (supercomputer, job, node) to meet the scalability and energy efficiency required by Exascale supercomputers. ANTAREX will solve these challenging problems by proposing a disruptive holistic approach spanning all the decision layers composing the supercomputer software stack and exploiting effectively the full system capabilities (including heterogeneity and energy management). The main goal of the ANTAREX project is to provide a breakthrough approach to express application self-adaptivity at design-time and to runtime manage and autotune applications for green and heterogenous High Performance Computing (HPC) systems up to the Exascale level.

    more_vert
  • Funder: European Commission Project Code: 957269
    Overall Budget: 5,037,370 EURFunder Contribution: 5,037,370 EUR

    The distributed and heterogeneous nature of the data sources in High Performance Big Data Analytics (HPDA) applications, as well as the required computational power, is pushing designers towards novel computing systems that combine HPC, Cloud, and IoT solutions (for efficient and distributed computation closer to the data) with Artificial Intelligence (AI) algorithms (for knowledge extraction and decision making). In this context, the EVEREST project addresses the matching problem between application (and data) requirements, and the characteristics of the underlying heterogeneous hardware. Only an optimal match leads to efficient computation. In particular, we forecast that the creation of future Big Data systems will be of course data-driven, but also featuring complex heterogeneous and reconfigurable architectures that must be redesigned or customized based on the nature and locality of the data, and the type of learning/decisions to be performed. The EVEREST project aims at developing a holistic approach for co-designing computation and communication in a heterogeneous, distributed, scalable and secure system for HPDA. This is achieved by simplifying the programmability of heterogeneous and distributed architectures through a “data-driven” design approach, the use of hardware-accelerated AI, and through an efficient monitoring of the execution with a unified hardware/software paradigm. EVEREST proposes a design environment that combines state-of-the-art, stable programming models, and emerging communication standards, with novel and dedicated domain-specific extensions. Three industry-relevant application scenarios are used to validate the EVEREST approach and act as business cases for the project exploitation: (i) a weather analysis-based prediction model for the renewable energy trading market, (ii) an application for air-quality monitoring of industrial sites, and (iii) a real-time traffic modeling framework for intelligent transportation in smart cities.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.