Powered by OpenAIRE graph
Found an issue? Give us feedback

Transport Systems Catapult

Transport Systems Catapult

15 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/N021614/1
    Funder Contribution: 3,163,720 GBP

    Globally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N004213/1
    Funder Contribution: 555,527 GBP

    In recent years the concept of driverless or autonomous road vehicles (AVs) has gained a great deal of technical respectability and most major manufacturers intend to bring a partially or fully autonomous vehicle to market within the next few years. Much progress has been made on a range of technologies relevant to this concept, including digital mapping, position recognition by lidar and radar systems and advanced vehicle to vehicle communications. There are a number of advantages for such vehicles over normal driver controlled vehicles in terms of safety, reliability, access for the disabled and increasing the efficiency of road use. The latter comes about primarily because such vehicles are able to drive closely together in platoon formation. This project is concerned with a technical area associated with platoon running. where to date only a restricted amount of experimental work has been carried out - that of the aerodynamics of vehicles travelling in platoons, and the nature of the flow field in and around platoons is not well understood. In particular the following aspects will be investigated. a) The overall stability of vehicles travelling in the wake of other vehicles, particularly if there are organised coherent wake flow structures such as trailing vortices. These stability effects may be made more severe by the presence of slight cross winds that result in asymmetric and variable wakes, which can be expected to occur for the majority of the time. b) Problems associated with exhaust pollutants can also be envisaged, as it is possible that pollutants may build up along the length of the platoon and not be released into the open atmosphere, and may, if the conditions are suitable, be ingested by vehicle power plant and ventilation systems. c) Aerodynamic noise is an important design consideration for road vehicles, both in terms of passenger and driver comfort, and in terms of the overall effect of traffic on the surrounding environment. It is not clear how the use of platoon running of AVs will affect the internal and external propagation of aerodynamic vehicle noise. In addition work is proposed to investigate a related problem - the aerodynamic aspects of trains running very closely together, an issue which has emerged from recent studies of high speed coupling and uncoupling operations. This work will be carried out through physical and computational modelling. The physical modelling work will utilise the University of Birmingham moving model TRAIN Rig, which allows individual and platoons of vehicles to be propelled along a 150m long test track at speeds of up to 80m/s. The work will involve detailed measurements of pressure over the vehicles (such that aerodynamic forces can be calculated), and measurements of aerodynamic noise propagation from platoons and pollutant dispersion from platoons. The computational work will be carried out using conventional RANS techniques for a wide range of vehicle and platoon configurations, but also a smaller number of calculations using more sophisticated DES and LED methods to provide high quality unsteady flow information. Taken together, the physical modelling results and the CFD will enable a detailed understanding to be achieved of the aerodynamic behaviour of ground vehicles running closely together, which will be of considerable interest and importance to a variety of stakeholders.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R009953/1
    Funder Contribution: 4,448,300 GBP

    CASCADE will be a keystone in the current aerial robotics revolution. This programme will reach across a wide range of applications from fundamental earth science through to industry applications in construction, security, transport and information. There is a chasm between consumer level civilian drone operations and high cost military applications. CASCADE will realise a step change in aerial robotics capability and operations. We will be driven by science and industry problems in order to target fundamental research in five key areas; Integration, Safety, Autonomy, Agility, Capability and Scalability as well as overall project methodology. In targeting these six areas, CASCADE will free up current constraints on UAV operations, providing case study data, exemplars, guidance for regulation purposes and motivating links across the science and engineering divide. The landscape of aerial robotics is changing rapidly and CASCADE will allow the UK to be at the forefront of this revolution. This rapid change is reflected by the wide range of terminology used to describe aerial robots including; Drones, Unmanned Aerial Vehicles, Remotely Piloted Aerial Systems, and Small Unmanned Aircraft Systems (SUAS). Supporting technologies driving the aerial robotics revolution include improved battery technologies, actuators, sensors, computing and regulations. These have all significantly expanded the possibilities offered by smart, robust, adaptable, affordable, agile and reliable aerial robotic systems. There are many environmental challenges facing mankind where aerial robots can be of significant value. Scientists currently use resource intensive research ships and aircraft to study the oceans and the atmosphere. CASCADE will focus on reducing these costs and at the same time increasing capability. Some mission types involve prohibitive risks, such as volcano plume sampling and flight in extreme weather conditions. CASCADE will focus on managing these risks for unmanned systems, operating in conditions where it is not possible to operate manned vehicles. Similarly, there are many potentially useful commercial applications such as parcel delivery, search and rescue, farming, inspection, property maintenance, where aerial robots can offer considerable cost and capability benefits when compared to manned alternatives. CASCADE will focus on bringing autonomous aerial capabilities to a range of industry applications. For both scientific and industry purposes, CASCADE will consider a range of vehicle configurations from standard rotary and fixed wing through to hybrid and multi modal operations. These will bring unique capabilities to challenging operations for which there is no conventional solution. At present, because of concerns over safety, there are strict regulations concerning where and how aerial robots can be operated. Permissions for use are granted by the UK Civil Aviation Authority and operations are generally not permitted beyond line of sight, close to infrastructure or large groups of people, or more than 400 feet from the ground. These regulations currently restrict many of the potentially useful applications for aerial robots. CASCADE aims to undertake research into key underpinning technologies that will allow these to be extended or removed by working with regulating authorities to help shape the operating environment for future robotic systems. CASCADE will prove fundamental research through a wide variety of realistic CASE studies. These will be undertaken with academic and industry partners, focussing on demonstrating key technologies and concepts. These test missions will undertake a wide range of exciting applications including very high altitude flights, aerial robots that can also swim, swarms of sensor craft flying into storms, volcanic plumes and urban flights. Through these CASCADE will provide underpinning research, enable and educate users and widely support the aerial robotics revolution.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S032134/1
    Funder Contribution: 966,315 GBP

    Establishing a hydrogen fuelled transportation network is a research challenge that cuts across both the energy and transport sectors. It is a truly multi-disciplinary challenge which will require the advancement of many mutually dependent research disciplines. This Network will support the dissemination and impact of these activities between academia, industry, policymakers and the general public. Under the hydrogen fuelled transportation theme, the Network aims to bring together the knowledge obtained through research projects funded by the RCUK Programme and other national and international cross-disciplinary research aimed at developing a "hydrogen" for transport economy. It will have a strong multi-disciplinary focus and aim to ensure engagement and knowledge transfer takes place across all modes of transport and hydrogen energy including technology, socio-economics, behavioural science and policy. The Network team will manage a £500k feasibility fund for cutting edge projects which also meet the wider objectives of facilitating collaboration and multi-disciplinary research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S032002/1
    Funder Contribution: 1,334,520 GBP

    The latest report from the Intergovernmental Panel on Climate Change in 2018 highlighted the need for urgent, transformative change, on an unprecedented scale, if global warming is to be restricted to 1.5C. The challenge of reaching an 80% reduction in emissions by 2050 represents a huge technological, engineering, policy and societal challenge for the next 30 years. This is a huge challenge for the transport sector, which accounts for over a quarter of UK domestic greenhouse gas emissions and has a flat emissions profile over recent years. The DecarboN8 project will develop a new network of researchers, working closely with industry and government, capable of designing solutions which can be deployed rapidly and at scale. It will develop answers to questions such as: 1) How can different places be rapidly switched to electromobility for personal travel? How do decisions on the private fleet interact with the quite different decarbonisation strategies for heavy vehicles? This requires integrating understanding of the changing carbon impacts of these options with knowledge on how energy systems work and are regulated with the operational realities of transport systems and their regulatory environment; and 2) What is the right balance between infrastructure expansion, intelligent system management and demand management? Will the embodied carbon emissions of major new infrastructure offset gains from improved flows and could these be delivered in other ways through technology? If so, how quickly could this happen, what are the societal implications and how will this impact on the resilience of our systems? The answer to these questions is unlikely to the same everywhere in the UK but little attention is paid to where the answers might be different and why. Coupled with boundaries between local government areas, transport network providers (road and rail in particular) and service operators there is potential for a lack of joined up approaches and stranded investments in ineffective technologies. The DecarboN8 network is led by the eight most research intensive Universities across the North of England (Durham, Lancaster, Leeds, Liverpool, Manchester, Newcastle, Sheffield and York) who will work with local, regional and national stakeholders to create an integrated test and research environment across the North in which national and international researchers can study the decarbonisation challenge at these different scales. The DecarboN8 network is organised across four integrated research themes (carbon pathways, social acceptance and societal readiness, future transport fuels and fuelling, digitisation, demand and infrastructure). These themes form the structure for a series of twelve research workshops which will bring new research interests together to better understand the specific challenges of the transport sector and then to work together on integrating solutions. The approach will incorporate throughout an emphasis on working with real world problems in 'places' to develop knowledge which is situated in a range of contexts. £400k of research funding will be available for the development of new collaborations, particularly for early career researchers. We will distribute this in a fair, open and transparent manner to promote excellent research. The network will help develop a more integrated environment for the development, testing and rapid deployment of solutions through activities including identifying and classifying data sources, holding innovation translation events, policy discussion forums and major events to highlight the opportunities and innovations. The research will involve industry and government stakeholders and citizens throughout to ensure the research outcomes meet the ambitions of the network of accelerating the rapid decarbonisation of transport.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.