
ESTEC
5 Projects, page 1 of 1
assignment_turned_in Project2015 - 2016Partners:East Kilbride Engineering Services Ltd, EPSRC Ctr for Large Area Electronics, KNT, LMUK Insys Ltd, E.A. Fischione Instruments Inc +26 partnersEast Kilbride Engineering Services Ltd,EPSRC Ctr for Large Area Electronics,KNT,LMUK Insys Ltd,E.A. Fischione Instruments Inc,Gatan Ltd,ESTEC,Tektonex Limited,European Space Agency,NHS GREATER GLASGOW AND CLYDE,Tektonex Limited,ASE,East Kilbride Engineering Services Ltd,University of Glasgow,QinetiQ,Qioptiq Ltd,Touch Bionics,University of Glasgow,E.A. Fischione Instruments Inc,Shadow Robot Company Ltd,CENSIS,The Shadow Robot Company,NHS Greater Glasgow and Clyde,Kelvin Nanotechnology Ltd,Touch Bionics,Lockheed Martin UK Ampthill Ltd,ESTEC,NHS Greater Glasgow and Clyde,CENSIS,EPSRC Ctr for Large Area Electronics,Gatan LtdFunder: UK Research and Innovation Project Code: EP/M028135/1Funder Contribution: 697,985 GBPOur proposal requests five distinct bundles of equipment to enhance the University's capabilities in research areas ranging across aerospace, complex chemistry, electronics, healthcare, magnetic, microscopy and sensors. Each bundle includes equipment with complementary capabilities and this will open up opportunities for researchers across the University, ensuring maximum utilisation. This proposal builds on excellent research in these fields, identified by the University as strategically important, which has received significant external funding and University investment funding. The new facilities will strengthen capacity and capabilities at Glasgow and profit from existing mechanisms for sharing access and engaging with industry. The requested equipment includes: - Nanoscribe tool for 3D micro- and nanofabrication for development of low-cost printed sensors. - Integrated suite of real-time manipulation, spectroscopy and control systems for exploration of complex chemical systems with the aim of establishing the new field of Chemical Cybernetics. - Time-resolved Tomographic Particle Image Velocimetry - Digital Image correlation system to simultaneously measure and quantify fluid and surface/structure behaviour and interaction to support research leading to e.g. reductions in aircraft weight, drag and noise, and new environmentally friendly engines and vehicles. - Two microscopy platforms with related optical illumination and excitation sources to create a Microscopy Research Lab bringing EPS researchers together with the life sciences community to advance techniques for medical imaging. - Magnetic Property Measurement system, complemented by a liquid helium cryogenic sample holder for transmission electron microscopy, to facilitate a diverse range of new collaborations in superconductivity-based devices, correlated electronic systems and solid state-based quantum technologies. These new facilities will enable interdisciplinary teams of researchers in chemistry, computing science, engineering, medicine, physics, mathematics and statistics to come together in new areas of research. These groups will also work with industry to transform a multitude of applications in healthcare, aerospace, transport, energy, defence, security and scientific and industrial instrumentation. With the improved facilities: - Printed electronics will be developed to create new customized healthcare technologies, high-performance low-cost sensors and novel manufacturing techniques. - Current world-leading complex chemistry research will discover, design, develop and evolve molecules and materials, to include adaptive materials, artificial living systems and new paradigms in manufacturing. - Advanced flow control technologies inside aero engine and wing configurations will lead to greener products and important environmental impacts. - Researchers in microscopy and related life science disciplines can tackle biomedical science challenges and take those outputs forward so that they can be used in clinical settings, with benefits to healthcare. - Researchers will be able to develop new interfaces in advanced magnetics materials and molecules which will give new capabilities to biomedical applications, data storage and telecommunications devices. We have existing industry partners who are poised to make use of the new facilities to improve their current products and to steer new joint research activities with a view to developing new products that will create economic, social and environmental impacts. In addition, we have networks of industrialists who will be invited to access our facilities and to work with us to drive forward new areas of research which will deliver future impacts to patients, consumers, our environment and the wider public.
more_vert assignment_turned_in Project2014 - 2023Partners:ESTEC, Airbus Group Limited (UK), Schlumberger, FEESA Limited, MBDA UK Ltd +40 partnersESTEC,Airbus Group Limited (UK),Schlumberger,FEESA Limited,MBDA UK Ltd,BAE Systems (Sweden),nVIDIA,Defence Science & Tech Lab DSTL,FEESA Limited,European Space Agency,Defence Science & Tech Lab DSTL,McLaren Honda (United Kingdom),Siemens plc (UK),Bae Systems Defence Ltd,CD-adapco,DSTL,Computational Dynamics Limited,Rolls-Royce (United Kingdom),Total E&P UK PLC,ARA,Rolls-Royce (United Kingdom),nVIDIA,Cameron Flow Control Technology (UK) Ltd,Schlumberger,BAE Systems (United Kingdom),EADS Airbus,ESTEC,Total E&P UK PLC,BP British Petroleum,CD-adapco,McLaren Racing Ltd,BP (International),UK Aerodynamics,Aircraft Research Association Ltd,ROLLS-ROYCE PLC,Airbus (United Kingdom),Procter & Gamble Limited (P&G UK),Imperial College London,UK Aerodynamics,MBDA UK Ltd,BAE Systems (UK),PROCTER & GAMBLE TECHNICAL CENTRES LIMITED,ASE,SIEMENS PLC,CameronFunder: UK Research and Innovation Project Code: EP/L016230/1Funder Contribution: 4,283,610 GBPOur goal is to create a world-class Centre for Doctoral Training (CDT) in fluid dynamics. The CDT will be a partnership between the Departments of Aeronautics, Bioengineering, Chemical Engineering, Civil Engineering, Earth Science and Engineering, Mathematics, and Mechanical Engineering. The CDT's uniqueness stems from training students in a broad, cross-disciplinary range of areas, supporting three key pillars where Imperial is leading internationally and in the UK: aerodynamics, micro-flows, and fluid-surface interactions, with emphasis on multi-scale physics and on connections among them, allowing the students to understand the commonalities underlying disparate phenomena and to exploit them in their research on emerging and novel technologies. The CDT's training will integrate theoretical, experimental and computational approaches as well as mathematical and modelling skills and will engage with a wide range of industrial partners who will contribute to the training, the research and the outreach. A central aspect of the training will focus on the different phenomena and techniques across scales and their inter-relations. Aerodynamics and fluid dynamics are CDT priority areas classified as "Maintain" in the Shaping Capabilities landscape. They are of key importance to the UK economy (see 'Impact Summary in the Je-S form') and there currently is a high demand for, but a real dearth of, doctoral-level researchers with sufficient fundamental understanding of the multi-scale nature of fluid flows, and with numerical, experimental, and professional skills that can immediately be used within various industrial settings. Our CDT will address these urgent training needs through a broad exposure to the multi-faceted nature of the aerodynamics and fluid mechanics disciplines; formal training in research methodology; close interaction with industry; training in transferable skills; a tight management structure (with an external advisory board, and quality-assurance procedures based on a monitoring framework and performance indicators); and public engagement activities. The proposed CDT aligns perfectly with Imperial's research strategy and vision and has its full support. The CDT will leverage the research excellence of the 60 participating academics across Imperial, demonstrated by a high proportion of internationally-leading researchers (among whom are 15 FREng, and, 4 FRS), 5*-rated (RAE) departments, and a fluid dynamics research income of 93M pounds sinde 2008 (with about 32% from industry) including a number of EPSRC-funded Programme Grants in fluid dynamics (less than 4 or 5 in the UK) and a number of ERC Advanced Investigator Grants in fluid dynamics (less than about 7 across Europe). The CDT will also leverage our existing world-class training infra-structure, featuring numerous pre-doctoral training programmes, high-performance computing and laboratory facilities, fluid dynamic-specific seminar series, and our outstanding track-record in training doctoral students and in graduate employability. The Faculty of Engineering has also committed to the development of bespoke dedicated space which is important for cohort-building activities, and the establishment of a fluids network to strengthen inter-departmental collaborations for the benefit of the CDT.
more_vert assignment_turned_in Project2019 - 2020Partners:University of Strathclyde, ESTEC, ESTEC, University of Strathclyde, European Space Agency +1 partnersUniversity of Strathclyde,ESTEC,ESTEC,University of Strathclyde,European Space Agency,ASEFunder: UK Research and Innovation Project Code: ST/T003227/1Funder Contribution: 141,042 GBPThe backbone network in future telecommunication systems will move from copper and fibre to mm-wave wireless connections, allowing rapid deployment, mesh-like connectivity with fast data rates of tens of gigabits per second for future mobile applications such as cloud computing, big data, virtual reality and the Internet of Things. The main restriction in the uptake of mm-wave wireless mobile communications is the challenge in forming the mm-wave backhaul links due to the lack of high power (kilo-watt) wideband mm-wave amplifiers. The gyro-amplifiers developed under STFC IPS Project (ST/P001890/1) offers a unique opportunity to fill a long standing gap in the generation of high power coherent millimetre wave radiation with its amplification with an unprecedented 6% instantaneous bandwidth and an unrivalled power of 3.4kW at 93 GHz. For satellite communications the gyro-TWA has the power at W-band frequencies to overcome attenuation due to rain and moisture in the atmosphere while possessing sufficient bandwidth (6%) for high data rate transmission to multiple satellites. Building on the recent success of W. He, C. R. Donaldson, L. Zhang et al PRL 2017, 119 no. 18, p. 184801, and L. Zhang, C. R. Donaldson et al IEEE Electron Device Letters 2018, vol. 39, no. 7, pp. 1077-1080 where short pulse (sub-microsecond) 93GHz gyro-TWA operation was demonstrated the procurement of a 60kV, 1.2A DC power supply is required to enable continuous wave gyro-TWA operation which will result in a paradigm shift in what is achievable for ground based, cellular telecommunications networks and satellite communications.
more_vert assignment_turned_in Project2015 - 2017Partners:ASE, University of Birmingham, ESTEC, BAE Systems (UK), BAE Systems (United Kingdom) +9 partnersASE,University of Birmingham,ESTEC,BAE Systems (UK),BAE Systems (United Kingdom),University of Greenwich,ESTEC,University of Greenwich,Huawei Technologies Sweden AB,BAE Systems (Sweden),Huawei Technologies Sweden AB,Bae Systems Defence Ltd,European Space Agency,University of BirminghamFunder: UK Research and Innovation Project Code: EP/M013529/1Funder Contribution: 98,559 GBPMicrowave filters are essential components in many wireless systems from mobile base stations to satellites. They are used to select useful signals while rejecting unwanted interferences or spurious signals. The most widely used microwave filters are formed of resonators that are electromagnetically coupled together to generate the required transmission responses between the two ports - input and output. The properties of the resonators and the couplings between them can be mathematically represented by a so-called 'coupling matrix'. Such a matrix may be found - synthesised - from the required frequency response. The synthesis of two-port filters is an established art. Recently this coupling matrix approach has been extended from two-port filters to multi-port filtering networks (MPFNs). The fundamental difference between a filter and a MPFN is the 'junction resonators', introduced to route the signal to different ports. Such resonators serve not only as resonant poles as in a filter, but also as splitters of the signal which are traditionally achieved by non-resonant transmission lines. One of the microwave circuits that benefit most from the MPFN concept is a multiplexer, also known as a combiner or a filter bank. It basically contains multiple interconnected filters, used to combine multiple channels and feed to one antenna for transmission or reception. It is one of the most complex passive circuits in wireless base stations and satellite payloads. Conventionally all the channel filters are connected to the common port through a signal distribution network based on transmission lines. Using the MPFN concept, the transmission line network can be replaced with resonators. This significantly increases the selectivity of the multiplexer without sacrificing the circuit size, which is highly desired by industrial applications. This means the multiplexer, usually a large component, can be reduced in size and mass for a more contact system. In the case of satellites, this can be translated to a significant cost reduction. The exclusive use of resonators in a microwave circuit also enables integrating filtering function into traditional non-filtering circuit. For instance, common microwave power dividers and couplers are transmission-line based with very limited selectivity. By using the MPFN concept, all-resonator-based power dividers and couplers can be realised with embedding filtering functions. This means two circuit functions are merged into one circuit. This approach is known as 'co-design'. Despite the significant increase in the usage of the MPFN concept and co-design approach in microwave circuit design, there are still significant challenges associated with the technique. The synthesis of the MPFNs is much more demanding than the filters. It requires a new understanding of the coupling characteristics around the junction resonators. The currently inaccessible synthesis technique impedes the take-up of the MPFN concept by microwave engineers. Also there are concerns with the bandwidth and power handling capability of the MPFN-enable devices, as the junction resonator is narrowband in nature and may be a concentration of power. This project aims to develop a robust, more accessible and applicable synthesis technique for MPFNs and to address the practical challenges in bandwidth and power handling by proposing novel junction resonators. The research will help to release the full potentials of MPFNs for industrial applications. There is no doubt the MPFN concept will lead to more innovations in microwave circuits. Built on from the synthesis technique, the project will investigate two new circuit concepts. It is expected new research directions on novel microwave circuits, opportunities for further development and commercial exploration will be generated from this project.
more_vert assignment_turned_in Project2016 - 2019Partners:University of Washington, Alfred Wegener Institute (Helmholtz), Washington University in St. Louis, ESTEC, DLR Oberpfaffenhofen +12 partnersUniversity of Washington,Alfred Wegener Institute (Helmholtz),Washington University in St. Louis,ESTEC,DLR Oberpfaffenhofen,University of Bristol,Utrecht University,University of Bristol,Alfred Wegener Inst for Polar & Marine R,European Space Agency,AWI,ESA/ESRIN,ESTEC,ESA/ESRIN,University of Washington,ASE,DLR OberpfaffenhofenFunder: UK Research and Innovation Project Code: NE/N011511/1Funder Contribution: 291,024 GBPThe grounding line of the Antarctic Ice Sheet is the point at which ice leaves the continent and enters the ocean and contributes to sea level. It is where the ocean has its greatest influence on inland flow through bottom melting of floating ice shelves. It is, in fact, a zone (the Grounding Zone) where tidal motion, basal melting and ice dynamics are all key controls on its structure. The GZ is a dynamic feature of the ice sheet and changes in its location and structure may indicate the development of an instability in ice flow or a change in ice motion that will impact sea level and the future evolution of the ice sheet. Identifying and monitoring the evolution of the GZ is important, therefore, for providing i) an early warning of changes in state of the inland ice, ii) as an input into numerical models of ice sheet flow and iii) for measuring the flux of ice leaving the ice sheet. The ice thickness at the grounding line is an essential variable for determining the flux of ice leaving the ice sheet based on observations of ice velocity. To date, there has been no satisfactory way to investigate the evolution of the GZ for the whole of Antarctica. The aim of this project is to achieve this goal using a novel approach applied to CryoSat 2 data. This satellite was launched in 2010 and has a unique instrument on board called the SIRAL, which provides, for the first time, the ability to resolve at high temporal and spatial resolution the detailed structure of the GZ. Proof of concept analyses indicate its huge potential for this but work is required to i) improve and verify the accuracy of the CryoSat 2 data and ii) fully develop the methods for studying the GZ. Once this is achieved, we intend to monitor the evolution of the GZ over at least a seven year period and hopefully extending this further into the future using the same methods. In the process, we will also address an outstanding issue related to the accuracy of the ice thickness estimates derived from surface elevation in the GZ and greatly improve the accuracy of ice thickness estimates over the freely floating shelves that fringe almost the entire coastline of Antarctica.
more_vert