Powered by OpenAIRE graph
Found an issue? Give us feedback

ExxonMobil (United States)

ExxonMobil (United States)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/K038656/1
    Funder Contribution: 4,980,770 GBP

    Evolution over the eons has made Nature a treasure trove of clever solutions to sustainability, resilience, and ways to efficiently utilize scarce resources. The Centre for Nature Inspired Engineering will draw lessons from nature to engineer innovative solutions to our grand challenges in energy, water, materials, health, and living space. Rather than imitating nature out of context or succumbing to superficial analogies, research at the Centre will take a decidedly scientific approach to uncover fundamental mechanisms underlying desirable traits, and apply these mechanisms to design and synthesise artificial systems that hereby borrow the traits of the natural model. The Centre will initially focus on three key mechanisms, as they are so prevalent in nature, amenable to practical implementation, and are expected to have transformational impact on urgent issues in sustainability and scalable manufacturing. These mechanisms are: (T1) "Hierarchical Transport Networks": the way nature bridges microscopic to macroscopic length scales in order to preserve the intricate microscopic or cellular function throughout (as in trees, lungs and the circulatory system); (T2) "Force Balancing": the balanced use of fundamental forces, e.g., electrostatic attraction/repulsion and geometrical confinement in microscopic spaces (as in protein channels in cell membranes, which trump artificial membranes in selective, high-permeation separation performance); and (T3) "Dynamic Self-Organisation": the creation of robust, adaptive and self-healing communities thanks to collective cooperation and emergence of complex structures out of much simpler individual components (as in bacterial communities and in biochemical cycles). Such nature-inspired, rather than narrowly biomimetic approach, allows us to marry advanced manufacturing capabilities and access to non-physiological conditions, with nature's versatile mechanisms that have been remarkably little employed in a rational, bespoke manner. High-performance computing and experimentation now allow us to unravel fundamental mechanisms, from the atomic to the macroscopic, in an unprecedented way, providing the required information to transcend empiricism, and guide practical realisations of nature-inspired designs. In first instance, three examples will be developed to validate each of the aforementioned natural mechanisms, and simultaneously apply them to problems of immediate relevance that tie in to the Grand Challenges in energy, water, materials and scalable manufacturing. These are: (1) robust, high-performance fuel cells with greatly reduced amount of precious catalyst, by using a lung-inspired architecture; (2) membranes for water desalination inspired by the mechanism of biological cell membranes; (3) high-performance functional materials, resp. architectural design (cities, buildings), informed by agent-based modelling on bacteria-inspired, resp. human communities, to identify roads to robust, adaptive complex systems. To meet these ambitious goals, the Centre assembles an interdisciplinary team of experts, from chemical and biochemical engineering, to computer science, architecture, materials, chemistry and genetics. The Centre researchers collaborate with, and seek advice from industrial partners from a wide range of industries, which accelerates practical implementation. The Centre has an open, outward looking mentality, inviting broader collaboration beyond the core at UCL. It will devote significant resources to explore the use of the validated nature-inspired mechanisms to other applications, and extend investigation to other natural mechanisms that may inform solutions to problems in sustainability and scalable manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V034154/1
    Funder Contribution: 1,151,140 GBP

    Liquid infused surfaces (LIS) are a novel class of surfaces inspired by nature (pitcher plants) that repel any kind of liquid. LIS are constructed by impregnating rough, porous or textured surfaces with wetting lubricants, thereby conferring them advantageous surface properties including self-cleaning, anti-fouling, and enhanced heat transfer. These functional surfaces have the potential to solve a wide range of societal, environmental and industrial challenges. Examples range from household food waste, where more than 20% is due to packaging and residues; to mitigating heat exchanger fouling, estimated to be responsible for 2.5% of worldwide CO2 emissions. Despite their significant potential, however, to date LIS coatings are not yet viable in practice for the vast majority of applications due to their lack of robustness and durability. At a fundamental level, the presence of the lubricant gives rise to a novel but poorly understood class of wetting phenomena due to the rich interplay between the thin lubricant film dynamics and the macroscopic drop dynamics, such as an effective long-range interaction between droplets and delayed coalescence. It also leads to numerous open challenges unique to LIS, such as performance degradation due to lubricant depletion. Integral to this EPSRC Fellowship project is an innovative numerical approach based on the Lattice Boltzmann method (LBM) to solve the equations of motion for the fluids. A key advantage of LBM is that key coarse-grained molecular information can be incorporated into the description of interfacial phenomena, while remaining computationally tractable to study the macroscopic flow dynamics relevant for LIS. LBM is also highly flexible to account for changes in the interface shape and topology, complex surface geometry, and it is well-suited for high performance computing. The developed simulation framework will be the first that can fully address the complexity of wetting dynamics on LIS, and the code will be made available open source through OpenLB. Harnessing the LBM simulations and supported by experimental data from four project partners, I will provide the much-needed step change in our understanding of LIS. The expected outcomes include: (i) design criteria that minimise lubricant depletion, considered the main weakness of LIS; (ii) new insights into droplet and lubricant meniscus dynamics on LIS across a wide range of lubricant availability and wettability conditions; and (iii) quantitative models for droplet interactions on LIS mediated by the lubricant. These key challenges are shared by the majority, if not all, of LIS applications. Addressing them is the only way forward to better engineer the design of LIS. Finally, the computational tools and fundamental insights developed in the project will be exploited to explore two potentially disruptive technologies based on LIS, which are highly relevant for the energy-water-environment nexus in sustainable development. First, I will investigate application in carbon capture, exploiting how liquids can be immobilised in LIS with a large surface to volume ratio, in collaboration with ExxonMobil. More specifically, liquid amine-based CO2 capture is an important and commercially practised method, but the costly infrastructure and operation prohibit its widespread implementation. Excitingly, LIS may provide a solution to a more economical carbon capture method using liquid amine. Second, motivated by the current gap of 47% in global water supply and demand, as well as environmental pressure to reduce the use of surfactants, I will examine new approaches to clean in collaboration with Procter & Gamble. The key idea is to induce dewetting of unwanted liquid droplets on solid surfaces using a thin film of formulation liquid, thus introducing wettability alteration more locally and using much reduced resources.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V047078/1
    Funder Contribution: 7,328,270 GBP

    Chemical separations are critical to almost every aspect of our daily lives, from the energy we use to the medications we take, but consume 10-15% of the total energy used in the world. It has been estimated that highly selective membranes could make these separations 10-times more energy efficient and save 100 million tonnes/year of carbon dioxide emissions and £3.5 billion in energy costs annually (US DoE). More selective separation processes are essential to "maximise the advantages for UK industry from the global shift to clean growth", and will assist the move towards "low carbon technologies and the efficient use of resources" (HM Govt Clean Growth Strategy, 2017). In the healthcare sector there is growing concern over the cost of the latest pharmaceuticals, which are often biologicals, with an unmet need for highly selective separation of product-related impurities such as active from inactive viruses (HM Govt Industrial Strategy 2017). In the water sector, the challenges lie in the removal of ions and small molecules at very low concentrations, so-called micropollutants (Cave Review, 2008). Those developing sustainable approaches to chemicals manufacture require novel separation approaches to remove small amounts of potent inhibitors during feedstock preparation. Manufacturers of high-value products would benefit from higher recovery offered by more selective membranes. In all these instances, higher selectivity separation processes will provide a step-change in productivity, a critical need for the UK economy, as highlighted in the UK Government's Industrial Strategy and by our industrial partners. SynHiSel's vision is to create the high selectivity membranes needed to enable the adoption of a novel generation of emerging high-value/high-efficiency processes. Our ambition is to change the way the global community perceives performance, with a primary focus on improved selectivity and its process benefits - while maintaining gains already made in permeance and longevity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N004884/1
    Funder Contribution: 6,650,590 GBP

    Society faces major challenges that require disruptive new materials solutions. For example, there is a worldwide demand for materials for sustainable energy applications, such as safer new battery technologies or the efficient capture and utilization of solar energy. This project will develop an integrated approach to designing, synthesizing and evaluating new functional materials, which will be developed across organic and inorganic solids, and also hybrids that contain both organic and inorganic modules in a single solid. The UK is well placed to boost its knowledge economy by discovering breakthrough functional materials, but there is intense global completion. Success, and long-term competitiveness, is critically dependent on developing improved capability to create such materials. All technologically advanced nations have programmes that address this challenge, exemplified by the $100 million of initial funding for the US Materials Genome Initiative. The traditional approach to building functional materials, where the properties arise from the placement of the atoms, can be contrasted with large-scale engineering. In engineering, the underpinning Newtonian physics is understood to the point that complex structures, such as bridges, can be constructed with millimetre precision. By contrast, the engineering of functional materials relies on a much less perfect understanding of the relationship between structure and function at the atomic level, and a still limited capability to achieve atomic level precision in synthesis. Hence, the failure rate in new materials synthesis is enormous compared with large-scale engineering, and this requires large numbers of researchers to drive success, placing the UK at a competitive disadvantage compared to larger countries. The current difficulty of materials design at the atomic level also leads to cultural barriers: in building a bridge, the design team would work closely with the engineering construction team throughout the process. By contrast, the direct, day-to-day integration of theory and synthesis to identify new materials is not common practice, despite impressive advances in the ability of computation to tackle more complex systems. This is a fundamental challenge in materials research. This Programme Grant will tackle the challenge by delivering the daily working-level integration of computation and experiment to discover new materials, driven by a closely interacting team of specialists in structure and property prediction, measurement and materials synthesis. Key to this will be unique methods developed by our team that led to recent landmark publications in Science and Nature. We are therefore internationally well placed to deliver this timely vision. Our approach will enable discovery of functional materials on a much faster timescale. It will have broad scope, because we will develop it across materials types with a range of targeted properties. It will have disruptive impact because it uses chemical understanding and experiment in tandem with calculations that directly exploit chemical knowledge. In the longer term, the approach will enable a wide range of academic and industrial communities in chemistry and also in physics and engineering, where there is often a keener understanding of the properties required for applications, to design better materials. This approach will lead to new materials, such as battery electrolytes, materials for information storage, and photocatalysts for solar energy conversion, that are important societal and commercial targets in their own right. We will exploit discoveries and share the approach with our commercial partners via the Knowledge Centre for Materials Chemistry and the new Materials Innovation Factory, a £68 million UK capital investment in state-of-the-art materials research facilities for both academic and industrial users. Industry and the Universities commit 55% of the project cost.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V034154/2
    Funder Contribution: 720,194 GBP

    Liquid infused surfaces (LIS) are a novel class of surfaces inspired by nature (pitcher plants) that repel any kind of liquid. LIS are constructed by impregnating rough, porous or textured surfaces with wetting lubricants, thereby conferring them advantageous surface properties including self-cleaning, anti-fouling, and enhanced heat transfer. These functional surfaces have the potential to solve a wide range of societal, environmental and industrial challenges. Examples range from household food waste, where more than 20% is due to packaging and residues; to mitigating heat exchanger fouling, estimated to be responsible for 2.5% of worldwide CO2 emissions. Despite their significant potential, however, to date LIS coatings are not yet viable in practice for the vast majority of applications due to their lack of robustness and durability. At a fundamental level, the presence of the lubricant gives rise to a novel but poorly understood class of wetting phenomena due to the rich interplay between the thin lubricant film dynamics and the macroscopic drop dynamics, such as an effective long-range interaction between droplets and delayed coalescence. It also leads to numerous open challenges unique to LIS, such as performance degradation due to lubricant depletion. Integral to this EPSRC Fellowship project is an innovative numerical approach based on the Lattice Boltzmann method (LBM) to solve the equations of motion for the fluids. A key advantage of LBM is that key coarse-grained molecular information can be incorporated into the description of interfacial phenomena, while remaining computationally tractable to study the macroscopic flow dynamics relevant for LIS. LBM is also highly flexible to account for changes in the interface shape and topology, complex surface geometry, and it is well-suited for high performance computing. The developed simulation framework will be the first that can fully address the complexity of wetting dynamics on LIS, and the code will be made available open source through OpenLB. Harnessing the LBM simulations and supported by experimental data from four project partners, I will provide the much-needed step change in our understanding of LIS. The expected outcomes include: (i) design criteria that minimise lubricant depletion, considered the main weakness of LIS; (ii) new insights into droplet and lubricant meniscus dynamics on LIS across a wide range of lubricant availability and wettability conditions; and (iii) quantitative models for droplet interactions on LIS mediated by the lubricant. These key challenges are shared by the majority, if not all, of LIS applications. Addressing them is the only way forward to better engineer the design of LIS. Finally, the computational tools and fundamental insights developed in the project will be exploited to explore two potentially disruptive technologies based on LIS, which are highly relevant for the energy-water-environment nexus in sustainable development. First, I will investigate application in carbon capture, exploiting how liquids can be immobilised in LIS with a large surface to volume ratio, in collaboration with ExxonMobil. More specifically, liquid amine-based CO2 capture is an important and commercially practised method, but the costly infrastructure and operation prohibit its widespread implementation. Excitingly, LIS may provide a solution to a more economical carbon capture method using liquid amine. Second, motivated by the current gap of 47% in global water supply and demand, as well as environmental pressure to reduce the use of surfactants, I will examine new approaches to clean in collaboration with Procter & Gamble. The key idea is to induce dewetting of unwanted liquid droplets on solid surfaces using a thin film of formulation liquid, thus introducing wettability alteration more locally and using much reduced resources.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.