Powered by OpenAIRE graph
Found an issue? Give us feedback

Thales Optronics Ltd

Country: United Kingdom

Thales Optronics Ltd

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/R033013/1
    Funder Contribution: 824,120 GBP

    Our tangible cultural heritage, both historic and contemporary, is made from a plethora of complex multilayer materials. What we see is often only the surface and form of an object. Hidden below are the materials and evidence of the processes by which the objects were originally created. By using state of the art imaging / spectroscopy systems which can map the composition and reveal the stages of their creation, we gain an understanding about the meaning and significance, both in their original context and our present day. This is at the heart of the disciplines of technical art history, archaeology and material culture studies. It also informs collections care, access policies and conservation of cultural heritage. Infrared imaging and spectroscopy is particularly well suited to looking below the surface, as the scattering which normally occurs with visible light is usually much less. Thus the infrared penetrates further into the object. Depending on the material and its structure the infrared light will be absorbed or reflected. This can either be directly imaged or modulated (Fourier Transform Spectroscopy) to acquire spectroscopic information indicating the chemical composition. Most techniques employed at present within the field of cultural heritage can only make spot measurements; to map large areas would take hours to days to acquire the data and therefore is not usually viable or suitable for in-situ measurements. Other techniques require samples to be taken and are therefore invasive. We aim to explore state of the art IR imaging strategies that will be "fit for the job". This implies wide bandwidth, full field and fast techniques coupled with signal processing/ photonics methods to analyse, visualise and manipulate large multivariate data sets. By exploiting state-of-the-art laser sources developed at Heriot-Watt and providing massively tunable infrared light, we will explore and develop several complementary strategies for 4-dimensional imaging (3 x spatial, 1 x wavelength). Compressive sensing illumination techniques and machine-learning based data processing will allow us to image rapidly and efficiently while also extracting the maximum value from our datasets by automatically classifying surface and sub-surface features. In this way we expect to produce outcomes of shared value for both the ICT and Technical Art History researchers in our team. Contextual information from art history will inform the photonic design and computational anaylsis strategies we deploy, while powerful ICT-led techniques will provide the Technical Art History community with new technical capabilities that reveal previously hidden structure and history. The significance to the public of our cultural heritage has motivated us to integrate outreach activity from the start, in particular a dynamic website using 4D data to allow an interactive tool for exploring the chosen case studies, reflecting the People at the Heart of ICT priority. The project includes industrial partners who will contribute resources and expertise in mid-IR lasers (Chromacity Ltd.) and mid-IR cameras (Thales Optronics Ltd.). Our partners have committed substantial in-kind support in the form of access to their technology and contributions of staff time. Furthermore, their engagement ensures that activities within the project, and the outcomes these generate, can be rapidly evaluated for adjacent commercial opportunities. EPSRC priorities are reflected in the project's structure. Cross-Disciplinarity is embedded as collaborations within the ICT community (Photonics & AI Technologies researchers) and with researchers from the AHRC-funded Cultural Heritage community. Co-Creation is essential: only by combining the distinct technical, contextual and material resources of each research group in our team will the project succeed in delivering new capabilities for IR imaging and analysis and new insights into culturally important objects of shared value.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N007565/1
    Funder Contribution: 4,183,690 GBP

    Sensors are everywhere, facilitating real-time decision making and actuation, and informing policy choices. But extracting information from sensor data is far from straightforward: sensors are noisy, prone to decalibrate, and may be misplaced, moved, compromised, and generally degraded over time. We understand very little about the issues of programming in the face of pervasive uncertainty, yet sensor-driven systems essentially present the designer with uncertainty that cannot be engineered away. Moreover uncertainty is a multi-level phenomenon in which errors in deployment can propagate through to incorrectly-positioned readings and then to poor decisions; system layering breaks down when exposed to uncertainty. How can we be assured a sensor system does what we intend, in a range of dynamic environments, and how can we make a system ``smarter'' ? Currently we cannot answer these questions because we are missing a science of sensor system software. We will develop the missing science that will allow us to engineer for the uncertainty inherent in real-world systems. We will deliver new principles and techniques for the development and deployment of verifiable, reliable, autonomous sensor systems that operate in uncertain, multiple and multi-scale environments. The science will be driven and validated by end-user and experimental applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/J000833/1
    Funder Contribution: 98,407 GBP

    Thales are the leading company in Europe for high performance long wavelength infra-red (LWIR) imagers. Thales has been developing thermal imagers for more than 40 years, and is currently working on a unique polarimetric thermal imaging camera concept - the Polarimetric Catherine MP. Thermal imagers provide day and night imaging capability with good object discrimination (for example, telling the difference between animals and vehicles). Further development work has been identified to progress the current camera capabilities. This work includes advanced signal, data and image processing development, some of which are already underway in house. The proposed project is integral part of this effort as it will address fundamental issues about the operation and performance of the detector, as well as investigating a novel approach to utilising the camera data (thermal and polarisation imagery) for deployment as part of a multi-modal imaging system. This will be achieved primarily through the application of existing expertise in Bayesian inference, imaging and polarisation in STFC-funded research groups (Astronmy and Institute of Gravitational Research) at the University of Glasgow. Algorithms will be developed with an aim to diagnosing and improving flat-fielding and polarimetric contrast. These algorithms will be tested using simulated data and test data acquired through experimentation and test field imaging. This project will coordinate and support in-house R&D of Thales polarimetric imagers and help the company gain a better understanding at all levels of this technology and maximise its application in different markets

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L01596X/1
    Funder Contribution: 4,493,490 GBP

    In a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde and Dundee, this proposal is for an EPSRC CDT in Applied Photonics and responds to the Integrative Technologies priority area, but also impacts on the Measurement and Sensing, Photonic Materials and Innovative Production Processes priorities. Technologies integrating photonics and electronics pervade products and services in any modern economy, enabling vital activities in manufacturing, security, telecommunications, healthcare, retail, entertainment and transport. The success of UK companies in this technology space is threatened by a lack of doctoral-level researchers with a grasp of photonic- / electronic-engineering design, fabrication and systems integration, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will deliver broad-ranging impacts on the UK industrial knowledge base, driving the high-growth export-led sectors of the UK economy whose photonics-enabled products and services have far-reaching impacts on society, from consumer technology and mobile computing devices to healthcare and security. Building on the success of our current IDC in Optics and Photonics Technologies, the proposed CDT will again be configured as an IDC but will enhance our existing programme to meet industry's need for engineers able to integrate photonic and electronic devices, circuits and systems to deliver high value products and processes. Our proposal was developed in partnership with industry, whose letters of support show a commitment to sponsoring 71-74 EngD and 14-17 PhD projects -- 40% more than the minimum required -- demonstrating exceptional industrial engagement. Major stakeholders include Fraunhofer UK, NPL, Renishaw, Thales, BAE Systems, Gooch and Housego and Selex ES, who are joined by a number of SMEs. The CDT follows a model in which (annually) EPSRC funds 7 EngD students, with 3 more supported by industrial / university contributions. In a progressive strategy supported by our industrial partners, we will, where appropriate, align university-funded PhD projects to the programme to leverage greater industry engagement with PhD research in the consortium. The focus of the CDT corresponds to areas of research excellence in the consortium, which comprises 89 academic supervisors, whose papers since 2008 total 584 in all optics journals , with 111 in Science / Nature / PRL, and whose active EPSRC PI photonics funding is £40.9M. All academics are experienced supervisors, having each supervised on average >6 doctoral students, with many previously acting as IDC supervisors. The strategic commitment by the participating universities is evidenced by their recruitment since 2008 of 29 new academic staff in relevant areas (including 9 professors). An 8-month frontloaded residential phase in St Andrews and Glasgow will ensure the cohort strongly gels together, and will equip students with the technical knowledge and skills they need before they begin their industrial research project. Business modules (x3) will bring each cohort back to Heriot-Watt for 1-week periods, and weekend skills workshops will be used to regularly reunite the cohort, further consolidating it to create opportunities for peer-to-peer interactions. Taught courses will total 120 credits, and will be supplemented by new Computational Methods, Systems Integration and Research Skills workshops delivered by our industry partners, as well as public-engagement training led by Glasgow Science Centre. Another innovation is an International Advisory Board, comprising leading academics / industrialists , who will benchmark and advise on our performance. The requested EPSRC support of £4.5M is complemented by £2.8M of industrial / academic cash, covering the cost of 3 students in each cohort of 10. In-kind industrial / academic contributions are worth a further £5.4M, providing exceptional value.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P00041X/1
    Funder Contribution: 729,655 GBP

    Diamond and fibre are a natural match that provides a platform to take high-power lasers into hitherto unattainable parameter regimes and to serve new applications. Though attractive in its simplicity, this area remains largely unexplored. Here, we propose a partnership that will enable high-impact applications through careful investigation of the underpinning device science. This will lead to fibre-pumped diamond Raman lasers with properties tailored to applications in LIDAR and clear plastics processing. We aim to lay the foundations for this to become the preferred approach for a number of important laser applications. Fibre lasers are the laser of choice from medicine to materials processing thanks to their reliability, low cost of ownership, proven performance, and outstanding power scalability. While moderate laser parameters and standard wavelengths suffice for many applications, many more require better beam quality, narrower linewidths, specific wavelengths, or well-controlled high-energy pulses - but still at hundreds of watts of output power. Fibre lasers can only rarely simultaneously satisfy these requirements. In this project, we aim to overcome these generic limitations of fibre sources by employing diamond to shift fibre lasers further into infrared via stimulated Raman scattering (SRS) with simultaneous brightness enhancement and, in the case of pulses, spectral narrowing towards the transform-limit. The UK is established as a world leader in fibre laser research and has played a leading role in pioneering the use of diamond in Raman lasers. Both fibre lasers and diamond are recognized as being superbly power scalable thanks to superior optical and thermal properties. Our approach will harness the advantages of fibre systems - efficiency, compactness, and reliability - while modifying their output to better address key industrial challenges. While the combination of fibre and diamond is a platform solution that can address a wide range of wavelength-specific applications, especially in the near IR range, in this project we aim to prove the technology in two areas that are important for our industrial partners. This proposal will deliver a new type of laser that is uniquely capable of the combination of power, brightness, spectral purity and wavelength required for industrially important applications in LIDAR and clear plastic processing.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.