Powered by OpenAIRE graph
Found an issue? Give us feedback

AIXTRON SE

Country: Germany
37 Projects, page 1 of 8
  • Funder: European Commission Project Code: 101194246
    Overall Budget: 46,626,100 EURFunder Contribution: 13,965,000 EUR

    GENESIS, backed by Horizon Europe, aims to make semiconductor manufacturing sustainable, aligning with the European Green Deal, by minimizing environmental impact with eco-friendly innovations. [Objectives] GENESIS aims to replace harmful materials with safer options, improve waste management, and enhance the use and recyclability of scarce materials. [Innovations] GENESIS introduces innovations in three key areas: • Innovative materials: PFAS-free polymer and eco-friendly gas alternatives complying with EU regulations. • Waste & emissions monitoring: Cutting-edge sensors detect hazardous substances for efficient aqueous and gas waste elimination, reducing environmental and health risks. • Scarce material management: New integration technologies optimize material usage and initiate recycling of scarce materials like Gallium, Niobium, and silicon carbide. [Methodology] GENESIS employs four technical work packages to research sustainable material substitution, emission reduction, and resource management. This modular approach promotes scalability and integration with existing processes, fostering a circular economy in the semiconductor sector. Supervised by management work packages, it quantifies environmental efficiency and engages in dissemination to promote European technological achievements [Outcomes] The project targets a 50% cut in hazardous materials, 30% decrease in emissions and waste, and improved scarce material recyclability, boosting EU semiconductor sustainability and global competitiveness. [Impact] GENESIS supports EU's tech sovereignty and resilience through accurate monitoring and sustainable practices. It positions Europe as a leader in sustainable semiconductor tech, setting new standards for impact-oriented communication and dissemination.

    more_vert
  • Funder: European Commission Project Code: 674990
    Overall Budget: 3,717,200 EURFunder Contribution: 3,717,200 EUR

    Artificial lighting is a global and growing industry. New forms of efficient solid state lighting (SSL) in particular are rapidly gaining a market share. New OLED technologies (Organic Light Emitting Diode) can revolutionise this industry as they have done in displays because of their potential flexible structure, infinite tailoring of their properties, efficiency and high colour quality. Industrial forecasts predict that the OLED lighting market will grow from $200 million in 2015 to $1.7 billion by 2020. In order to fully benefit from this huge market potential, Europe`s academia and industry are eager to develop new technologies and recruit highly qualified staff. The high demand for OLED SSL lighting however will place drastic demands on the use of very expensive and rare iridium. EXCILIGHT aims to explore exciplex emitters and thermally activated delayed fluorescence (TADF) in OLEDs that will enable us to replace Ir complexes whilst retaining ultrahigh efficiency and giving many new possibilities to simplify OLED design, helping to reduce costs and increase yields of production. Our network will train 15 Early Stage Researchers (ESRs) in the development and application of exciplex and TADF emitters, who can apply their expertise directly in future positions. EXCILIGHT is characterised by an innovative multidisciplinary approach, based on i) a combination of synthesis, physical characterisation and development of devices with the lighting industry, ii) an appropriate balance between research and transferable skills training, and iii) a strong contribution from the private sector, including leading industry and SMEs, through mentoring, courses and secondments. EXCILIGHT will positively impact the employability of its ESRs in the OLED industry through scientific and industrial training at the local and network level. With this approach we aim to train a new generation of scientists at the same time as integrating this exciting new technology into industry.

    more_vert
  • Funder: European Commission Project Code: 953187
    Overall Budget: 4,992,000 EURFunder Contribution: 4,992,000 EUR

    MUSICODE is an ambitious project which addresses the H2020 Call DT-NMBP-11-2020 “Open Innovation Platform for Materials Modelling” that will develop a novel Open Innovation Materials Modelling Platform to enable the Organic and Large Area Electronics Industry (OLAE) to expediate accurate and knowledgeable business decisions on materials design and processing for optimization of the efficiency and quality of OLAE device manufacture. This platform will integrate: (a) Material, process and device modelling with workflows spanning the micro-, meso- and macro- scales, validated by expert academic and industry partners. (b) Integrated data management and modelling framework with ontology-based semantic interoperability between scales, solvers, data and workflows, with industry-accepted material and process modelling parameters and protocols, employing graphical user interface tools for workflow design, analysis, optimization and decision making. (c) Plug-ins to Materials Modelling Marketplaces, Open Translation Environment, Business Decision Support Systems, etc. and to High Performance Computing infrastructures for workflow execution. The platform will demonstrate industry user case workflows to optimize OLAE materials selection & design as well as printing and gas-phase manufacturing. The MUSICODE Business Plan will ensure the platform sustainability, exploitation and industrial adoption beyond the project, with the ambition to become the central Open Innovation Hub for the OLAE industry and evolve as the central paradigm for cross-domain applications.

    more_vert
  • Funder: European Commission Project Code: 101007310
    Overall Budget: 62,247,600 EURFunder Contribution: 15,030,600 EUR

    GaN4AP project has the ambitious target of making the GaN-based electronics to become the main power active device present in all power converter systems, with the possibility of developing a close-to-zero energy loss power electronic systems. GaN4AP project will… 1. Develop innovative Power Electronic Systems for power conversion and management with advanced architecture and circuit topology based on state of the art GaN-based High Electron Mobility Transistors (HEMTs) available in a new concept high-frequency packages that can achieve the requested 99% power conversion efficiency. 2. Develop an innovative material (Aluminium Scandium Nitride, AlScN) that combined with advanced growth and process solutions can provide outstanding physical properties for highly efficient power transistors. Therefore, a new HEMT device architecture will be fabricated with much higher current (2x) and power density (2x) than existing transistors. 3. Develop a new generation of vertical power GaN-based devices on MOSFET architecture with vertical p-GaN inversion channel for safe power switching up to 1200 V. We will cover all the production chain from the device design, processing and characterization up to tests in low inductance half bridge power modules and their implementation in high speed power switching systems. 4. Develop a new intelligent and integrated GaN solutions (STi2GaN) both in System in Package (SiP) and Monolithic variances, that will allow the generation of E-Mobility power converters. The projects will focus on scalable concept for 48V-12V bidirectional Buck Boost converters for conventional and ADAS applications combining, in a novel wire-bond free package, a state of the art BCD driver & controller along with a common substrate Monolithic 100V e-GaN Half Bridge. The development of new device technologies and innovative power circuits, employing the GaN-based devices is a crucial factor for the world-wide competitiveness of EU industries.

    more_vert
  • Funder: European Commission Project Code: 101097296
    Overall Budget: 101,901,000 EURFunder Contribution: 24,573,800 EUR

    The challenges and major HiCONNECTS objectives are to transform the centralized cloud platform to decentralized platforms which include edge cloud computing in a sustainable, energy-efficient way. This will bring cloud services including Artificial Intelligence (AI) closer to the IOT end-users, which enables them to really use the COT and IOT efficiently. The technologies underpinning this revolutionary step include the development of high-performance computing, storage infrastructure, network interfaces and connecting media , and the analysis of IOT sensors and big data in real-time. This major step forward will enable, for example, the mobile clients (during the 5G deployment phase and 6G exploration) to move among different places with minimum cost, short response time and with stable connection between cloud nodes and mobile devices. The main underlying technology to be developed by the HiCONNECTS consortium, comprising large industrial players, universities and RTO’s, and many SMEs, can be summarized under the title: ’heterogenous integration’ (HI) which is needed to meet the computing power, bandwidth, latency and sensing requirements for the next generation cloud and edge computing and applications. The HI revolution brings the electronic components and systems (ECS) into a new domain, which combines traditional silicon wafers integrated circuit (IC), InP based high speed electronics , and Si and InP photonics devices and interconnect. The HiCONNECTS ambition is to demonstrate, through HI development, a leap in computing and networking reliability and performances across the full vertical and horizontal ECS value chain (i.e. essential capabilities and key applications) in a sustainable way. In addition, HiCONNECTS will focus on the development of next generation design, algorithms, equipment (HW/SW), systems and Systems of Systems (SOS).

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.