
Highview Power Storage (United Kingdom)
Highview Power Storage (United Kingdom)
13 Projects, page 1 of 3
assignment_turned_in Project2022 - 2025Partners:University of Brighton, Zotefoams, University of Brighton, Highview Power Storage (United Kingdom), Bennamann +3 partnersUniversity of Brighton,Zotefoams,University of Brighton,Highview Power Storage (United Kingdom),Bennamann,Highview Power Storage (United Kingdom),Bennamann (United Kingdom),ZotefoamsFunder: UK Research and Innovation Project Code: EP/W027712/1Funder Contribution: 492,286 GBPEnergy storage is an essential technology for balancing the differences in supply and demand in a sustainable power network reliant on intermittent renewable generation. Energy can be stored as electricity, as heat and chemically in a sustainable fuel and at different temporal and size scales. Short time variations in the power grid can be effectively managed using batteries but the battery technologies are too expensive for servicing the bulk long term storage requirements to balance variations in demand between seasons and extended periods of low renewable generation. Technologies with a slower response, lower round trip efficiency but lower capital base are preferred for these applications. Liquid Air Energy Storage (LAES) is a long duration storage technology being developed by Highview Power. Energy is stored thermally in three ways; as cold in liquid air and in a backed bed regenerator cold store and as heat in a molten salt hot store. An air liquefier is used to charge the LARS device. LAES has a sweet spot at large (>50MW) scale as plant efficiency increases and relative cost reduces with scale for this technology. But what would happen if a LAES plant could be efficiently deployed at smaller (<50MW) scale? The technology could then be integrated with other aspects of the energy network that require cooling at cryogenic temperatures such as the long term storage of bio methane and green hydrogen. In this project, we will investigate the integration of a small to mid scale LAES plant with the liquefaction of locally produced bio methane from waste, such as agriculture, managed grass land (such as parks and sports fields) and sewerage. Similarly, hydrogen produced by small to mid size electrolysers connected to local renewable generators requires a storage solution. We propose cold, pressurised storage of hydrogen at 80-90K which lowers the pressure required to store the gas (for an equivalent energy density) by a factor of 2 to 3 and avoids the high energy cost of cryogenic storage at 20K. Integration of LAES with methane and hydrogen storage opens up new revenue steams and shifts the economics to favour smaller plant serving local communities such as large farms, local authorities and water companies managing sewage waste. We propose a local rather than central solution as (a) the feedstocks for bio-methane production have a low energy density to local production and storage avoids transportation inefficiencies (b) Similarly local production and consumption of hydrogen avoids the need to move cold pressurised gas to bulk storage facilities and then to consumers and (c) imbedding the core electrical energy storage of the LAES plant closer to the end user has benefits in reducing the load on the transmission network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f81ca2a7962edc5c2f9bb3050b6f44ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f81ca2a7962edc5c2f9bb3050b6f44ec&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Private Address, FutureBay, Xrenewable Ltd, Xrenewable Ltd, University of Warwick +8 partnersPrivate Address,FutureBay,Xrenewable Ltd,Xrenewable Ltd,University of Warwick,Highview Power Storage (United Kingdom),Energy Systems Catapult,Energy Systems Catapult,FutureBay,Highview Power Storage (United Kingdom),Private Address,University of Warwick,Private AddressFunder: UK Research and Innovation Project Code: EP/W027372/1Funder Contribution: 1,076,650 GBPCompressed Air Energy Storage (CAES) uses compressors to produce pressurised air while excessive power is available; the pressurised air is then stored in air reservoirs and will be released via a turbine to generate electricity when needed. Compared with other energy storage technologies, CAES has some highly attractive features including large scale, long duration, and low cost. However, its low round trip energy efficiency (the best CAES plant currently in operation has a 60.2% round trip efficiency) and low energy density cause major concerns for commercial deployment. The conversion of electricity to heat and storing the heat via thermal storage is a relatively mature and a highly efficient technology; but the conversion of the stored thermal energy back to electricity has a low energy efficiency (less than 40%) through (conventional and organic) Rankine cycles, thermoelectric generators, and recently proposed thermophotovoltaics. The project aims to develop a Hi-CAES technology, which integrates the CAES with high-temperature thermal energy storage (HTES) to achieve high energy conversion efficiency, high energy and power density, and operation flexibility. The technology uses HTES to elevate CAES power rate and also convert high-temperature thermal energy to electricity using compressed air - a natural working fluid. The proposed technology is expected to increase CAES's electricity-to-electricity efficiency to over 70% and overall energy efficiency to over 90% with additional energy supply for heating and cooling. The proposed Hi-CAES will also increase the storage energy density and system power rate significantly. Meanwhile, the technology can convert the stored thermal energy into electrical power with a much higher energy conversion efficiency and lower system cost than current thermoelectrical energy storage technologies. With the integration of HTES with CAES, the system dynamic characteristics and operation flexibility can be much improved in terms of charging and discharging processes. This will place Hi-CAES in a better financial position as it can generate revenue through certain high market value fast response grid balance service. The goal of the project is to improve both the CAES efficiency and energy density considerably through the integration with a HTES system. The research will address the technical and scientifically challenges for realisation of the Hi-CAES system and societal challenges of deep power system decarbonisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0374c1539cb13515e1dbf3e299cafc9f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0374c1539cb13515e1dbf3e299cafc9f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2017Partners:China General Nuclear Power Group, Gateway Storage Company Ltd, China General Nuclear Power Group, Pnu Power, ESCN +13 partnersChina General Nuclear Power Group,Gateway Storage Company Ltd,China General Nuclear Power Group,Pnu Power,ESCN,Highview Power Storage (United Kingdom),China Recycling Energy Corporation,Inner Mongolia Power Group,University of Birmingham,Pnu Power,ESCN,Highview Power Storage (United Kingdom),University of Birmingham,Gateway (United Kingdom),China Recycling Energy Corporation,Inner Mongolia Power Group,Pnu Power,Gateway Storage Company LtdFunder: UK Research and Innovation Project Code: EP/L014211/1Funder Contribution: 984,845 GBPThe energy systems in both the UK and China face challenges of unprecedented proportions. In the UK, it is expected that the amount of electricity demand met by renewable generation in 2020 will be increased by an order of magnitude from the present levels. In the context of the targets proposed by the UK Climate Change Committee it is expected that the electricity sector would be almost entirely decarbonised by 2030 with significantly increased levels of electricity production and demand driven by electrification of heat and transport. In China, the government has promised to cut greenhouse gas emission per unit of gross domestic product by 40-45% by 2020 based on the 2005 level. This represents a significant challenge given that over 70% of its electricity is currently generated by coal-fired power plants. Energy storage has the potential to provide a solution towards these challenges. Numerous energy storage technologies exist currently, including electrochemical (batteries, flow batteries and sodium sulphate batteries etc), mechanical (compressed air and pumped hydro etc), thermal (heat and cold), and electrical (supercapacitors). Among these storage technologies, thermal energy storage (TES) provides a unique approach for efficient and effective peak-shaving of electricity and heat demand, efficient use of low grade waste heat and renewable energy, low-cost high efficiency carbon capture, and distributed energy and backup energy systems. Despite the importance and huge potential, little has been done in the UK and China on TES for grid scale applications. This forms the main motivation for the proposed research. This proposed research aims to address, in an integrated manner, key scientific and technological challenges associated with TES for grid scale applications, covering TES materials, TES components, TES devices and integration. The specific objectives are: (i) to develop novel TES materials, components and devices; (ii) to understand relationships between TES material properties and TES component behaviour, and TES component behaviour and TES device performance; (iii) to understand relationship between TES component behaviour and manufacturing process parameters, and (iv) to investigate integration of TES devices with large scale CAES system, decentralized microgrid system, and solar thermal power generation system. We bring together a multidisciplinary team of internationally leading thermal, chemical, electrical and mechanical engineers, and chemical and materials scientists with strong track records and complementary expertise needed for comprehensively addressing the TES challenges. This dynamic team comprises 15 leading academics from 4 universities (Beijing University of Technology, University of Leeds, University of Nottingham and University of Warwick, and 2 Chinese Academy of Sciences Research Institutes (Institute of Engineering Thermophysics and Institute of Process Engineering), and 7 industrial partners.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::90b9fb0f0c298c819a4d586c439f4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::90b9fb0f0c298c819a4d586c439f4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Oxto Energy, Brook Green Innovations Ltd, Orsted, EC-OG Engineering Ltd, Oxto Energy +19 partnersOxto Energy,Brook Green Innovations Ltd,Orsted,EC-OG Engineering Ltd,Oxto Energy,Community Windpower,University of Sheffield,Siemens Gamesa Renewable Energy,Brook Green Innovations Ltd,[no title available],Arenko Group,EC-OG Engineering Ltd,Highview Power Storage (United Kingdom),Siemens Gamesa Renewable Energy,Highview Power Storage (United Kingdom),Community Windpower,Arenko,Modo Energy,SIEMENS PLC,SIEMENS PLC,Orsted A/S,University of Sheffield,Modo Energy Ltd,Siemens plc (UK)Funder: UK Research and Innovation Project Code: EP/W02764X/1Funder Contribution: 1,207,770 GBPIncreased energy storage storage is needed on the electrical network to support high levels of variable renewable electricity such as wind and solar to enable us to reach our net-zero goals. The UK network currently has 5.3GW of energy storage of which 1.3GW is battery energy storage and this is expected to grow by at least 8GW by 2030. However, this alone does not meet the estimated required capacity, we therefore need to use the storage that we have optimally, for example, the location of storage and when we use it is critical to avoid congestion on the network. We also need to promote the installation of different types of storage that can operate over different time scales so that for example excess generation in one season can be used in the next. The aim of the project is to determine how different distributed energy storage assets, of different sizes and technologies, can be integrated into the grid as part of a whole-system solution to enable adaptability, flexibility and resilience. The project will investigate where and how assets are connected to the grid, how they are controlled and what policies and market conditions are required to meet our storage requirements. The research will be carried out across 5 collaborating institutions with the work underpinned by experiments using operational grid-scale storage demonstrators operated within the consortium. The outputs will include: - Recommendations for optimal planning and scheduling of distributed storage under different policy and market conditions including incentives/regulation of locational deployment - The impacts of different levels of coordination of distributed storage across location, scale, and markets - Demonstrations of practical, scalable solutions for the coordinated control of storage assets and other sources of flexibility - A roadmap that describes the decision points and options for the energy system as distributed energy storage grows according to different scenarios to 2035.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f8d9d7964b47538da63089023bd52a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f8d9d7964b47538da63089023bd52a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:Upside Energy Ltd, EA Technology, AOS Technology Ltd, Hitachi (United Kingdom), ITM Power plc +26 partnersUpside Energy Ltd,EA Technology,AOS Technology Ltd,Hitachi (United Kingdom),ITM Power plc,HITACHI EUROPE LIMITED,Arup Group (United Kingdom),Highview Power Storage (United Kingdom),AOS Technology Ltd,ITM POWER PLC,Electricity North West (United Kingdom),S&C Electric Europe Limited,S&C Electric Europe Limited,Electricity North West (United Kingdom),ELECTRICITY NORTH WEST LIMITED,Arup Group,Arup Group Ltd,E.On UK Plc,Highview Power Storage (United Kingdom),E.ON (United Kingdom),E.ON UK PLC,EA Technology,Arup Group Ltd,University of Manchester,HITACHI EUROPE LIMITED,The University of Manchester,ITM Power plc,ITM Power (United Kingdom),University of Salford,Upside Energy Ltd,S&C Electric Europe LimitedFunder: UK Research and Innovation Project Code: EP/N001974/1Funder Contribution: 1,268,160 GBPThe UK has a commitment to reduce its greenhouse gas emissions by at least 80% by 2050 relative to 1990 levels. While the potential role of energy storage to support integration of RES and help meet these challenging targets is well recognised, development of suitable frameworks that could facilitate energy storage rollout is still lacking. This is due to multiple factors that can be reflected in relevant Research Challenges that this project aims to address. These include: - An adequate understanding of commercial, regulatory, and institutional settings that can facilitate storage deployment; - Gaining insights into the true value streams that individual storage devices and coordinated portfolios of different technologies can generate for different parties across different markets; - Modelling interactions and maximising synergies among different energy vectors, and in particular heat and gas besides electricity, in order to unlock the flexibility of multi-energy forms of storage; - Developing suitable techno-economic models that can cater for the relevant operational and investment uncertainties that affect storage operators and owners and properly consider network and market constraints; - Understanding of wider impacts and social responses of different storage technologies, including public perceptions and environmental impacts. Our Vision is to develop a comprehensive framework, supported by innovative techno-economic modelling techniques capable to deal with different types of operational and planning uncertainties as well as network constraints, aimed at fostering sustainable business cases for different types of energy storage. Our analyses will assess how individual energy storage devices or aggregated portfolios of devices connected to different network levels can provide multiple simultaneous steady-state, dynamic services and power quality services and assess the relevant impact and value arising from these services for different market parties. We will consider explicitly multi-energy forms of storage, and in particular different types of electrical energy storage and thermal energy storage technologies, as well as innovative technologies such as power-to-gas. Our models will be tested in various technical, commercial and regulatory environments and taking into account socio-economic and environmental aspects, including public perceptions to different technologies. The MY-STORE project will strategically supplement the current research and bring a new perspective by providing much broader context, understanding and responses to the wide-scale deployment of energy storage. Our Ambition is to be the first in the world to provide such a comprehensive framework that can inform policy debates and the business community on the value and role of any storage technology in the transition towards more sustainable energy networks. Notwithstanding the generality of the framework put forward, the studies will focus on the UK situation, with time horizons from short to medium term (around 2035) and then opening up to 2050 and beyond. In fact, part of our ambitious plan is to bring out the value and role of energy storage and demonstrate how it could be possible to build business cases already in the shorter term and even for technologies that are commercially available today (e.g., thermal energy storage and different types of batteries), and then to facilitate development of appropriate regulatory and market environments for wider scale storage deployment (and possibly based on new technologies) to deal with the challenges of developing a truly low-carbon energy system. Our research will put the UK at the international forefront in this important field and provide a secure platform for future developments, also based on close collaboration with our industrial partners which represent a variety of established and emerging multi-energy storage technologies that are being already deployed or trialled in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::85c481cbea2daa5690e4b18130f7b9ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::85c481cbea2daa5690e4b18130f7b9ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right