
Thales Aerospace
Thales Aerospace
101 Projects, page 1 of 21
assignment_turned_in Project2020 - 2024Partners:TTTech Group, Lancaster University, Airbus (United Kingdom), Maritime and Coastguard Agency, THALES UK LIMITED +30 partnersTTTech Group,Lancaster University,Airbus (United Kingdom),Maritime and Coastguard Agency,THALES UK LIMITED,RSL,EADS Airbus,Carnegie Mellon University,TTTech Group,BAE Systems,MCA,Austrian Institute of Technology,Airbus (UK),Manchester Cyber Foundry,University of the Armed Forces,RISE Research Institutes of Sweden AB,CMU,Manchester Cyber Foundry,RISE Research Institutes of Sweden,Raytheon Systems Ltd,DfT,Thales UK Limited,Arthurs Legal,Academia Sinica Taiwan,Thales Aerospace,Austrian Institute of Technology,NATO (North Atlantic Treaty Org),NATO,Bae Systems Defence Ltd,Academia Sinica,Arthurs Legal,RISE - Research Institutes of Sweden AB,BAE SYSTEMS PLC,Lancaster University,CODE Research InstituteFunder: UK Research and Innovation Project Code: EP/V026763/1Funder Contribution: 3,011,800 GBPAutonomous Systems (AS) are cyberphysical complex systems that combine artificial intelligence with multi-layer operations. Security for dynamic and networked ASs has to develop new methods to address an uncertain and shifting operational environment and usage space. As such, we have developed an ambitious program to develop fundamental secure AS research covering both the technical and social aspects of security. Our research program is coupled with internationally leading test facilities for AS and security, providing a research platform for not only this TAS node, but the whole TAS ecosystem. To enhance impact, we have built a partnership with leading AS operators in the UK and across the world, ranging from industrial designers to frontline end-users. Our long-term goal is to translate the internationally leading research into real-world AS impact via a number of impact pathways. The research will accelerate UK's position as a leader in secure AS research and promote a safer society.
more_vert assignment_turned_in Project2017 - 2020Partners:Rohde & Schwarz UK Limited, u-blox UK ltd., Thales Research and Technology UK Ltd, TRTUK, Thales Aerospace +10 partnersRohde & Schwarz UK Limited,u-blox UK ltd.,Thales Research and Technology UK Ltd,TRTUK,Thales Aerospace,u-blox UK Ltd,KCL,Vodafone (United Kingdom),Toshiba Research Europe Ltd,Vodafone,Vodafone UK Limited,Rohde & Schwarz (United Kingdom),Intel (United States),TREL,Intel CorporationFunder: UK Research and Innovation Project Code: EP/P003486/1Funder Contribution: 557,683 GBPIn response to the growing demands for delivery of content-rich and delay-sensitive services, network architectures for 5th generation and beyond wireless communication systems are becoming more and more dense. This illustrated through the ever increasing deployment of small cell networks as well as machine-to-machine (M2M) communications. This trend, whilst improving network capacity, will still necessitate reuse of available resources such as frequency spectrum within smaller areas by larger number of nodes/cells, which in turn would adversely affect the quality of service. On the other hand, by allowing simultaneous transmission and reception in the same frequency band, In-band Full-Duplex Communication (IFDC) technology potentially enhances the spectral efficiency of a single point-to-point (P2P) channel by 100% over the conventional half-duplex communication. IFDC also enables the nodes, e.g. in P2P scenarios, to receive channel feedback or sense other channels whilst transmitting data, which shortens the latency compared to conventional half duplex communication with time-division-duplexing. Moreover, using full duplex relay nodes in multi-hop scenarios can potentially reduce the end-to-end latency by enabling simultaneous receiving and relaying. Practical implementation of this technology requires rigorous interference cancellation methods at each node to suppress the strong self-interference imposed on the receiver by the transmitter of the same node. The major bulk of research on IFDC has focused on self interference cancellation (SIC), and the respective state-of-the-art technology can achieve a high level of SIC at full duplex terminals; hence the IFDC technology has become closer to commercial deployment by industry. Deploying IFDC in realistic dense settings entails new range of technical challenges, and opportunities alike. IFDC can yield substantially greater network throughputs and delay reductions over half duplex networking by deploying the technology in denser networks. However, attaining such gains demands for efficient scalable resource allocation and multi-node interference control methods. This great potential of 'full-duplex dense networks' in 'scalable service provisioning' has not been addressed to date by the research community in sufficient depth. At physical-layer, new resource allocation challenges arise in IFDC networks; for instance, in the design of concurrent channel sensing and data transmission, and in adapting transmit power of the nodes to their variable self-interference. Also, using IFDC in dense scenarios will affect design of the protocols in the higher layers; for instance IFDC would entail greater chance of packet collisions and multi-node interference, which demands for new medium access control (MAC) protocols suited to the emerging dense full duplex networks. Furthermore, IFDC will enable full duplex relaying in multi-hop communication, hence requires new Forwarding-layer/Network-layer protocols to deal with the new full-duplex forwarding paradigms. For conventional half duplex scenarios it is known that network throughput and quality of services can be improved through cross-layer methods, particularly with co-design of physical and MAC layers or MAC and Network/Forwarding layers. In fact for optimal scalability of heterogeneous services in full duplex dense networks, cross-layer approaches are inevitable. This project aims to propose systematic design of resource allocation and interference suppression techniques and algorithms at physical, MAC and Forwarding layers in order to enable substantial throughput gain and delay reduction by deploying full-duplex communication in dense wireless networks. These new methods will pave the way for deploying scalable service provisioning in the emerging dense wireless networks.
more_vert assignment_turned_in Project2016 - 2024Partners:WSP UK LIMITED, Mott Macdonald, CIRIA, EDF Energy (United Kingdom), Halcrow Group Ltd +86 partnersWSP UK LIMITED,Mott Macdonald,CIRIA,EDF Energy (United Kingdom),Halcrow Group Ltd,LONDON UNDERGROUND LIMITED,Thales Aerospace,WSP UK LIMITED,COSTAIN LTD,TREL,NPL,WSP Civils,Telespazio Vega,Redbite Solutions,Telespazio Vega,Rolatube Technology Ltd,Heriot-Watt University,Buro Happold Limited,Arup Group Ltd,Buro Happold,BURO HAPPOLD LIMITED,Geothermal International Ltd,AIG Science,CH2M HILL UNITED KINGDOM,Tongji University,Centro Public Transport,Carillion Plc,Cambridgeshire County Council,UCL,National Physical Laboratory NPL,Transport Systems Catapult,Environmental Scientifics Group,UT,Environmental Scientifics Group,CIRIA,National Highways,Future Cities Catapult,Mott Macdonald (United Kingdom),RU,Costain Ltd,ITM,Cambridge Integrated Knowledge Centre,Department for Transport,High Speed Two HS2 Limited,Ove Arup & Partners Ltd,GE Aviation,INF,Rolatube Technology Ltd,Cementation Skanska,Tongji University,University of Cambridge,University of Oxford,Sengenia Ltd,Crossrail Limited,Arup Group,AIG Science,High Speed Two HS2 Ltd,Crossrail Limited,Geothermal International Ltd,Transport Systems Catapult,Mabey Holdings Limited,Future Cities Catapult,Centro Public Transport,Thales UK Limited,AgustaWestland,Heriot-Watt University,Sengenia Ltd,Omnisense Limited,Redbite Solutions,Cambridgeshire County Council,UNIVERSITY OF CAMBRIDGE,ITM Monitoring,EDF Energy Plc (UK),Topcon Great Britain Ltd,McLaren Automotive Ltd,Cementation Skanska Limited,Topcon,Laing O'Rourke,British Energy Generation Ltd,Laing O'Rourke plc,Mabey Holdings Limited,CH2M Hill (United Kingdom),Rutgers State University of New Jersey,TfL,Toshiba Research Europe Ltd,THALES UK LIMITED,McLaren Automotive Ltd,Highways Agency,GE Aviation,Rutgers University,Cargill PlcFunder: UK Research and Innovation Project Code: EP/N021614/1Funder Contribution: 3,163,720 GBPGlobally, national infrastructure is facing significant challenges: - Ageing assets: Much of the UK's existing infrastructure is old and no longer fit for purpose. In its State of the Nation Infrastructure 2014 report the Institution of Civil Engineers stated that none of the sectors analysed were "fit for the future" and only one sector was "adequate for now". The need to future-proof existing and new infrastructure is of paramount importance and has become a constant theme in industry documents, seminars, workshops and discussions. - Increased loading: Existing infrastructure is challenged by the need to increase load and usage - be that number of passengers carried, numbers of vehicles or volume of water used - and the requirement to maintain the existing infrastructure while operating at current capacity. - Changing climate: projections for increasing numbers and severity of extreme weather events mean that our infrastructure will need to be more resilient in the future. These challenges require innovation to address them. However, in the infrastructure and construction industries tight operating margins, industry segmentation and strong emphasis on safety and reliability create barriers to introducing innovation into industry practice. CSIC is an Innovation and Knowledge Centre funded by EPSRC and Innovate UK to help address this market failure, by translating world leading research into industry implementation, working with more than 40 industry partners to develop, trial, provide and deliver high-quality, low cost, accurate sensor technologies and predictive tools which enable new ways of monitoring how infrastructure behaves during construction and asset operation, providing a whole-life approach to achieving sustainability in an integrated way. It provides training and access for industry to source, develop and deliver these new approaches to stimulate business and encourage economic growth, improving the management of the nation's infrastructure and construction industry. Our collaborative approach, bringing together leaders from industry and academia, accelerates the commercial development of emerging technologies, and promotes knowledge transfer and industry implementation to shape the future of infrastructure. Phase 2 funding will enable CSIC to address specific challenges remaining to implementation of smart infrastructure solutions. Over the next five years, to overcome these barriers and create a self-sustaining market in smart infrastructure, CSIC along with an expanded group of industry and academic partners will: - Create the complete, innovative solutions that the sector needs by integrating the components of smart infrastructure into systems approaches, bringing together sensor data and asset management decisions to improve whole life management of assets and city scale infrastructure planning; spin-in technology where necessary, to allow demonstration of smart technology in an integrated manner. - Continue to build industry confidence by working closely with partners to demonstrate and deploy new smart infrastructure solutions on live infrastructure projects. Develop projects on behalf of industry using seed-funds to fund hardware and consumables, and demonstrate capability. - Generate a compelling business case for smart infrastructure solutions together with asset owners and government organisations based on combining smarter information with whole life value models for infrastructure assets. Focus on value-driven messaging around the whole system business case for why smart infrastructure is the future, and will strive to turn today's intangibles into business drivers for the future. - Facilitate the development and expansion of the supply chain through extending our network of partners in new areas, knowledge transfer, smart infrastructure standards and influencing policy.
more_vert assignment_turned_in Project2022 - 2026Partners:British Telecommunications plc, THALES UK LIMITED, British Telecom, SinoWave, SinoWave +13 partnersBritish Telecommunications plc,THALES UK LIMITED,British Telecom,SinoWave,SinoWave,BT Group (United Kingdom),Plextek Ltd,Plextek Ltd,Thales Aerospace,Filtronic Plc,NEC UK Ltd,Qioptiq Ltd,Durham University,Durham University,Thales UK Limited,QinetiQ,Filtronic plc,Filtronic Compound Semiconductors LtdFunder: UK Research and Innovation Project Code: EP/W027151/1Funder Contribution: 786,349 GBPAs mobile radio systems developed, their operating frequency increased to the millimeter (mm) wave band (> 30 GHz) first used in the fifth-generation mobile radio network (5G). Now, as we look beyond 5G, higher frequencies are being considered with increased interest in the 140-170 GHz (termed D-band) and beyond (275 GHz band). At these frequencies, where there is plenty of available spectrum to satisfy the spectrum hungry applications of wireless systems, new designs are required, with little work done in this area world-wide. This proposal brings the complementary expertise of three world leading UK research groups, to research, design and experimentally demonstrate systems working at these frequencies, in an integrative and holistic fashion. For such work, there are three key challenges relating to the radio channel and the signal and system design. Challenge 1: to design wireless communication systems, it is paramount to have a verifiable model of the physical propagation channel by collecting measurement data from a specialist and bespoke designed equipment termed "channel sounder", which sends signals over the air and the receiver measures these signals after propagation. Such a model depends on several physical factors, but mainly the transmission signal parameters e.g. the frequency of transmission, the bandwidth of the signal, and the propagation channel physical parameters, such as the channel size and environment and whether it is indoors or outdoors, environmental factors, presence of obstacles, water moisture, pollution and other factors. Professor Salous and her group at Durham has been building channel sounders for over thirty years and the models she has developed are considered amongst the best in the world, used by regulators, industry and the United Nations through the International Telecommunications Union, (ITU). Professor Salous proposes to design and test new channel sounding in the D Band and at the higher 275 GHz band. These will be unique sounders and the aim is to develop unique models and set the standards for future generation wireless systems. The models will be verified in a practical setting through collaboration with the teams at QMUL and UCL. Challenge 2: The transmission of information at high frequencies requires specialist circuit and equipment design. Whilst there are several circuits for such signals, there are few antennas that can transmit and receive the signals and process them spatially. Professor Yang Hao at QMUL, who has been designing antennas for high frequencies for nearly three decades, will design specialist antennas, to be manufactured using simple 3D printing processes, to integrate to the system designed at Durham for full channel measurements. The designs will be optimized with consultation between the teams and taking the channel models into account. The outcome is a system with multiple antennas that can focus the transmission beams and change their shape and direction (a process termed beam forming) so that a system can be constructed that will fully utilize the benefits of the high frequencies and link to signals addressed by the UCL team. Challenge 3: for the past 20 years the UCL team, led by Professor Darwazeh, has designed and demonstrated the use of specialist signals for mobile and wireless systems that can maximise the amount of information while minimizing the energy required for good signal transmission; these processes are termed spectral and energy efficiencies. UCL will design spectrally and energy efficient signals, based on the D Band channel models derived at Durham and suitable for transmission using the antennas designed by QMUL; the outcome will be a complete transmission system at D Band with projected bit rates beyond 50 Gbit/s; nearly an order of magnitude beyond what can be achieved using 5G systems. The three teams bring strong industrial support to achieve what is predicted to be a world first and which brings interest from all sectors.
more_vert assignment_turned_in Project2020 - 2024Partners:Ocado Technology, Thales UK Limited, THALES UK LIMITED, ROVCO LIMITED, Thales Aerospace +26 partnersOcado Technology,Thales UK Limited,THALES UK LIMITED,ROVCO LIMITED,Thales Aerospace,British Telecom,Toshiba Europe Limited (UK),Olympus Surgical Technologies Europe,Toshiba International (Europe) Ltd,Martyn Thomas Associates Limited,Olympus Surgical Technologies Europe,Defence Science & Tech Lab DSTL,Defence Science & Tech Lab DSTL,ROVCO LIMITED,DSTL,Ocado Technology,University of Bristol,Prof Simon Gregory,University of Bristol,Prof Simon Gregory,Liverpool Data Research Associate LDRA,Burges Salmon LLP,LV=GI,British Telecommunications plc,Foster and Partners,Foster and Partners (United Kingdom),LV=GI,BT Group (United Kingdom),Liverpool Data Research Associate LDRA,Burges Salmon LLP,Martyn Thomas Associates LimitedFunder: UK Research and Innovation Project Code: EP/V026518/1Funder Contribution: 3,315,000 GBP'Autonomous systems' are machines with some form of decision-making ability, which allows them to act independently from a human controller. This kind of technology is already all around us, from traction control systems in cars, to the helpful assistant in mobile phones and computers (Siri, Alexa, Cortana). Some of these systems have more autonomy than others, meaning that some are very predictable and will only react in the way they are initially set up, whereas others have more freedom and can learn and react in ways that go beyond their initial setup. This can make them more useful, but also less predictable. Some autonomous systems have the potential to change what they do, and we call this 'evolving functionality'. This means that a system designed to do a certain task in a certain way, may 'evolve' over time to either do the same task a different way, or to do a different task. All without a human controller telling it what to do. These kinds of systems are being developed because they are potentially very useful, with a wide range of possible applications ranging from minimal down-time manufacturing through to emergency response and robotic surgery. The ability to evolve in functionality offers the potential for autonomous systems to move from conducting well defined tasks in predictable situations, to undertaking complex tasks in changing real-world environments. However, systems that can evolve in function lead to legitimate concerns about safety, responsibility and trust. We learn to trust technology because it is reliable, and when a technology is not reliable, we discard it because it cannot be trusted to function properly. But it may be difficult to learn to trust technology whose function is changing. We might also ask important questions about how functional evolutions are monitored, tested and regulated for safety in appropriate ways. For example, just because a robot with the ability to adapt to handle different shaped objects passes safety testing in a warehouse does not mean that it will necessarily be safe if it is used to do a similar task in a surgical setting. It is also unclear who, if anyone, bears the responsibility for the outcome of functional evolution - whether positive or negative. This research seeks to explore and address these issues, by asking how we can, or should, place trust in autonomous systems with evolving functionality. Our approach is to use three evolving technologies - swarm systems, soft robotics and unmanned air vehicles - which operate in fundamentally different ways, to allow our findings to be used across a wide range of different application areas. We will study these systems in real time to explore both how these systems are developed and how features can be built into the design process to increase trustworthiness, termed Design-for-Trustworthiness. This will support the development of autonomous systems with the ability to adapt, evolve and improve, but with the reassurance that these systems have been developed with methods that ensure they are safe, reliable, and trustworthy.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right