Powered by OpenAIRE graph
Found an issue? Give us feedback

Cambridge Environmental Research Consult

Cambridge Environmental Research Consult

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/W002965/1
    Funder Contribution: 624,437 GBP

    Local and global consequences of climate change (enhanced urban heat islands, worsening environmental conditions) affect most of the world's urban population, but only recently have cities been represented, albeit crudely, in weather forecast models. To manage and develop sustainable, resilient and healthy cities requires improved forecasting and observations that cross neighbourhood-influenced scales which the next generation weather forecast models need to resolve. ASSURE addresses the critical issue of which processes need to be parameterised, and which resolved, to capture urban heterogeneity in space and time. We will advance understanding to develop new approaches and parameterisations for larger-scale urban meteorological and dispersion models by combining the results of field observations, high-resolution numerical simulations and wind tunnel experiments. Field work and modelling will focus on Bristol, as its physical geography provides suitably high levels of complexity and allows whole-city approaches. With mid-sized cities being large sources of greenhouse gases, and where large numbers of people live, it is critical agencies can provide predictions of weather and climate variability across cities of this scale as they need this information to manage and provide their services. ASSURE will include idealised simulations and theoretical analyses to ensure generic applicability. The ASSURE objectives are: * To understand how sources of urban heterogeneity (physical setting, layout of buildings and neighbourhoods, human activities) combine to influence the urban atmosphere in space and time. * To quantify effects of urban heterogeneity at different scales (street to neighbourhood, to city and beyond) on flow, temperature, moisture and air quality controlling processes and to determine how these processes interact. * To develop a theoretical framework that captures key processes and feedbacks with reduced complexity to aid mesoscale and larger model parameterisations. * To inform the development priorities of current weather and climate models that have meso-scale capabilities and are used in decision-making processes (e.g. integrated urban services). The ASSURE high-fidelity simulations and carefully designed experiments will allow us to explore implications of urban heterogeneity in isolated and combined configurations; interpret and integrate field observations (e.g. 3D meteorological and city-scale tracer dispersion experiments); integrate different approaches to understand the magnitude, source, and geographical extent of uncertainties in process models at different scales; synthesize the new knowledge to conduct theoretical analyses; develop algorithms reflecting this analysis. Novel in ASSURE are simulations resolving street to city-scale features that are linked to mesoscale models; field observations capturing vertical and horizontal variations in the urban boundary- and canopy-layers, including novel multi-source gas tracer experiments; and wind tunnel simulations across atmospheric stabilities and model resolution. New insights will be gained on the role of variations in the building morphology (or form), local topography, and human activities (e.g. waste heat, and AQ emissions). ASSURE will produce detailed datasets; in-depth understanding across the scale of atmospheric processes involved; high-fidelity multiscale urban modelling tools; theoretical models taking account of multiscale effects; improved assessment of current meso-scale model skill and the data used by practitioners to explore future urban scenarios as city form and function change. We will work with local and international organisations and companies to ensure the project benefits a broad range of society. They include: Avon Longitudinal Study of Parents and Children, CERC, COWI, ECMWF, Met Office, Delft University of Technology, Stanford University, University Hannover, RWDI, Surrey Sensors and UKCRIC.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V002090/1
    Funder Contribution: 507,898 GBP

    The 2019 Climate Change Act committed the UK to reducing its emissions of greenhouse gases to net zero by 2050. The 2019 UK Clean Air Strategy, sees "air pollution as one of the UK's biggest public health challenges", aims to secure clean growth whilst tackling air pollution through reducing emissions. Achieving these reductions in greenhouse gas and air pollutant emissions will entail substantial reductions in use of fossil fuels and changes to the transport fleet over coming years as we make the transition to a 'low carbon economy'. This will also have an important benefit for health of improving levels of outdoor air pollution by reducing emissions from power plants, motor vehicles, wood/coal burning at home and other sources. However, another important climate change action is to improve energy efficiency in homes. Those measures typically entail reducing levels of ventilation to cut down heat losses from escape of heated air. In addition to helping improve winter indoor temperatures, this can be beneficial for human health because it reduces the penetration into the home of air pollutants from the outdoor environment. But it will increase indoor levels of air pollutants derived from sources inside the home - such as particles and gases generated by cooking, volatile organic compounds (VOCs) given off from fabrics and furnishings, cleaning and personal care products. The changes to indoor pollution levels from improved home energy efficiency may thus be overall positive or negative for the health of building occupants depending on the balance of effects on pollutants entering and leaving the indoor environment. That balance is likely to depend on the levels of outdoor pollutants, indoor air pollutant sources and activities that generate these, the form of the energy efficiency improvements, the behaviour of occupants and their vulnerability to air pollutants. People at particular risk are young children, the elderly, those with pre-existing illnesses, and those experiencing social deprivation. To improve understanding of these issues, we have created a new research network (acronym 'HEICCAAM'). This network brings together experienced and early career researchers from nine universities from disciplines as diverse as air quality measurement and modelling, building physics, behavioural science, health and health inequalities, education and policy. The network will also include representatives of the public, as well as stakeholders from the public sector, business/industry and non-government bodies - including Public Health England, Health Protection and NHS Scotland, Scottish Environment Protection Agency, Age UK, the Passivhaus Trust, Good Homes Alliance, Edinburgh City Council, the Chartered Institution of Building Services Engineers and the UK Met Office. The network will build evidence on the consequences for exposure to air pollution of actions aimed at tackling climate change and poor air quality, with particular focus on the home environment. Its aim is to provide underpinning research that can inform and influence policy and practice to safeguard human health. The network will include activities by six Working Groups tasked with generating a series of papers on relevant issues of science and policy. It will also undertake four small research projects aimed at improving understanding of key issues where there are knowledge gaps. It will have a particular focus on protecting the health of vulnerable groups and reduction of health inequities. Network members will have multiple interactions through electronic meetings, webinars, discussion groups and an annual meeting and workshop with a wider group of stakeholders. Through its activities, the network will help build long-term capability in interdisciplinary research in this area, including through the interactions with early career researchers, the development of new research plans, and linkage to other networks and existing research programmes.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S013814/1
    Funder Contribution: 120,674 GBP

    This Innovation project for impact will bring together policy and practice leaders concerned with how planning decisions affect urban air quality. The overarching aim is to make a software platform for the quantitative assessment of Green Infrastructure as an aid to the improvement of roadside air quality. We call this platform GI4RAQ. Our particular objectives can be summarised as: 1. to provide a consolidated, open-source, computer modelling code for roadside air pollution in urban settings based on our existing research code. 2. to co-design of a fit-for-purpose, simple, and attractive GI4RAQ platform for urban practitioners as a front-end to the consolidated model code. 3. to demonstrate that the GI4RAQ platform can unlock a critical impasse in current planning policy and so enable capacity-building on the regulatory and consultancy sides of the planning process. We will work with major influencers in the private and public sectors, which offers a rapid and cost-effective route to meaningful impact. Specifically, we will work with Transport for London and the Greater London Authority to influence the next issue of the London Plan. To be released towards the end of 2019, a proposed new policy requiring larger-scale developments to be 'Air Quality Positive' may be implemented, but only if tools exist to evidence such a result at planning. We will work with the UK's leading air quality consultants, Cambridge Environmental Research Consultants (CERC) and Ricardo Energy & Environment, to ensure that the GI4RAQ platform is fit for operational use and that it can be used alongside current Air Quality tools. London's 33 Local Authorities must ensure their Local Plans conform to the London Plan, and Authorities across the UK look to the London Plan in preparing their own Local Plans, both of which provide cascading impact for our proposed work. The project is designed to dovetail with 'WM Air', a large multi-partner programme focused on West Midlands' air quality led by the University of Birmingham. The GI4RAQ Principal Investigator leads the work stream on green infrastructure in WM Air alongside GI4RAQ partner Birmingham City Council, thereby ensuring rapid knowledge transfer between research and practice in London and Birmingham. The project will establish a robust approach to 'GI4RAQ' interventions to deliver reliable improvements in roadside air quality, based on quantitative computer modelling but avoiding the time and expense of full fluid flow simulations. The approach develops directly out of a NERC Innovation Pathfinder, which established that a strong demand for quantitative GI4RAQ exists, but also identified the policy impasse, and a placement of the researcher co-Investigator in Transport for London.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V002341/1
    Funder Contribution: 470,300 GBP

    The aim of this network is to bring together interdisciplinary expertise to address the problem of air quality in schools. The future health of our nation and indeed all human society depends on educating children in healthy environments. The Tackling Air Pollution at School (TAPAS) network focuses on that vulnerable section of every society - school children and their environment. Our vision is to create and develop a menu of options that can be introduced into schools to provide an environment free of pollutants and in harmony with nature, so that children have a fulfilling and healthy educational experience. These products need to be effective, inexpensive and, where possible, educational: i.e. they should involve the children in an understanding of their environment and provide them with an opportunity to engage with it in social, scientific and behavioural terms. We have chosen to focus on schools and school children for the following reasons. Children are a particularly vulnerable section of society. They are physiologically less able to regulate their temperature and are more susceptible to exposure to air pollution than adults. Among the vulnerable groups in society school pupils will experience the impact of poor air quality for the longest period into the future. Recently, over 2000 schools in the UK were identified as being in 'pollution hotspots' where air pollution exceeds WHO limits. From a practical viewpoint, working in schools has many advantages. School keep records on student attendance and pupils which provide information on absences related to health. They also have data on room occupancy, pupil activities (e.g. PE, meals) and movement through the school. This information is essential to determine personal exposure. Additionally, schools offer a wide variety of spaces including labs, meeting halls, dining areas as well as classrooms, each with different ventilation and indoor sources of pollution. The ability of schools to mitigate exposure to pollution is hampered by lack of knowledge. For example, the impact of idling vehicle engines near school while dropping off and collecting children on exposure in the playground or on indoor levels of NOx and particulate matter (PM) is unclear, making it impossible for schools to decide whether to ban idling or not. Our interdisciplinary team consists of experts in indoor and outdoor pollution, air pollution modelling, data science, building design and ventilation, education, social behaviour and health impacts. This will allow this network to address the critical issues associated with pollution in schools by offering a menu of solutions. We also propose to include a significant educational component so that pupils will learn about the impacts of poor air quality and take this knowledge with them as they grow up, thereby producing a lasting change in society. Schools also accommodate children with special educational needs and disabilities (SEND) who are even more vulnerable and who often require special environmental conditions. Furthermore, there are currently a wide range related activities concerning indoor environmental quality in schools that this network will bring together for the first time in a coordinated fashion.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N007352/1
    Funder Contribution: 224,213 GBP

    Decision-making and planning in rapidly growing urban centres require integrated assessment tools to determine impacts on environmental exposure, health and well being and inequalities. However, there is a lack of practical tools of sufficient spatial detail with which to determine current and future integrated exposure and health risks and to evaluate public policy options. In particular, despite the increasing availability of data, environmental datasets are limited to a few urban monitoring sites and information rich health microdata usually have restricted access (for confidentiality reasons). Moreover, spatio-temporal risk models are required to link exposure and health data to health outcomes and hence determine changes in risk from different policy and planning options. The overall aim of this project is create an interactive data platform, for Glasgow as an example urban environment that integrates geographically specific environmental exposure and health data and modelling: "QCumber-envHealth" to be used to quantify environmental exposure and health risks under different policy scenarios. This project brings together researchers from Cambridge Environmental Research Consultants (CERC), and from the Universities of Edinburgh, Glasgow and Strathclyde. CERC has extensive experience in software development, modelling and analysing city data, including environmental exposure modelling and the innovative "QCumber" data platform. The Universities have extensive research expertise in environmental exposure, human health and inequalities, including comprehensive high density measurement capabilities, the development of novel synthetic data estimation techniques for information rich health microdata and spatio-temporal health risk modelling. Close engagement with identified end-users at Glasgow City Council, Transport Scotland, Future cities Glasgow, Health Protection Scotland and NHS Glasgow, will commence at the onset of the project and be maintained throughout. The new "QCumber-envHealth" data platform will be customized by CERC to create a spatio-temporal database and interactive mapping tool for Glasgow integrating a wide range of existing and accessible datasets including health behaviour data available from the research team and linking with environmental modelling of air quality and noise (key innovation). Comprehensive measurements of air quality will be carried out to evaluate and improve existing Q-cumber exposure modelling capabilities with a focus on determining exposure along transport routes (key innovation). Key health micro datasets will be identified in collaboration with end users and synthesised (key innovation) for integration into the QCumber-envHealth platform. Health risk models will be developed for small area and micro data and integrated into QCumber-envHealth (key innovation). Working with end users, several relevant public policy scenarios associated with changing environmental (e.g. air or noise pollution, green space) or social (e.g. smoking prevalence, transport route) factors will be selected and health outcomes within the complex urban environment quantified (new innovation). The platform tool will be developed for use in Glasgow, but its methods and models will be fully transferable to other cities in the UK and worldwide. A commercialisation plan and timeline to market QCumber-envhealth to identified wider users across the UK: small authorities and larger local authorities, public bodies and commercial companies will be rolled out commencing with a dissemination workshop in the later stage of the project and presentations at national conferences e.g. Environmental Protection UK. In summary, this project will combine leading research, innovative technological developments and insights from end users to deliver the new QCumber-envHealth platform for integrated exposure and health assessment to enable decision-making and planning in urban centres, fulfilling a longstanding market need.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.