Powered by OpenAIRE graph
Found an issue? Give us feedback

Fibercore (United Kingdom)

Fibercore (United Kingdom)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/X030040/1
    Funder Contribution: 2,107,780 GBP

    The properties of light are already exploited in communications, the Internet of Things, big data, manufacturing, biomedical applications, sensing and imaging, and are behind many of the inventions that we take for granted today. Nevertheless, there is still a plethora of emerging applications with the potential to effect positive transformations to our future societies and economies. UK researchers develop cutting-edge technologies that will make these applications a reality. The characteristics of these technologies already surpass the operating wavelength range and electronic bandwidth of our existing measurement equipment (as well as other facilities in the UK), which currently forms a stumbling block to demonstrating capability, and eventually generating impact. Several important developments, relating for example, to integrated photonic technologies capable of operating at extremely high speeds or the invention of new types of optical fibres and amplifiers that are capable of breaking the traditional constraints of conventional silica glass technology, necessitate the use of ever more sophisticated equipment to evaluate the full extent of their capabilities. This project aims at establishing an open experimental facility for the UK research community that will enable its users to experiment over a wide range of wavelengths, and generate, detect and analyse signals at unprecedented speeds. The new facility will enable the characterisation of signals in time and will offer a detailed analysis of their frequency components. Coherent detection will be possible, thereby offering information on both the amplitude and phase characteristics of the signals. This unique capability will enable its users to devise and execute a range of novel experiments. For example, it will be possible to experiment using signals, such as those that will be adopted in the communication networks of the future. It will make it possible to reveal the characteristics of novel devices and components to an extent that has previously not been possible. It will also be possible to analyse the response of experimental systems in unprecedented detail. The facility will benefit from being situated at the University of Southampton, which has established strong experimental capabilities in areas, such as photonics, communications and the life sciences. Research at the extended cleanroom complex of Southampton's Zepler Institute, a unique facility in UK academia, will benefit from the availability of this facility, which will enable fabrication and advanced applications research to be intimately connected. Furthermore, this new facility will be attached to EPSRC's National Dark Fibre Facility - this is the UK National Research Facility for fibre network research, offering access and control over the optical layer of a dedicated communications network for research-only purposes. The two together will create an experimental environment for communications research that is unique internationally.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y016920/1
    Funder Contribution: 598,102 GBP

    Composite materials, such as those based on carbon and glass fibre reinforced polymer play an important role in driving global decarbonisation, through corrosion resistant and high-performance products and light-weighting sectors such as transport that lead to improved fuel economy and so reduce emissions. Our proposal targets sustainability of high value composite components, through embedding ultra-thin glass planar sensors, that can be used during manufacture and through a component's life to assess parameters linked to structural performance. Hence informed decisions can be made to extend useable life and reduce the scrappage associated with manufacture. This makes most efficient use of our limited resource of energy and raw materials. In addition to environmental sustainability, this work will also have economic advantages enabling the UK economy to continue to grow innovative technology and associated highly skilled jobs. Despite the huge lightweighting benefit of composites they are not utilised to their full potential due to variability caused at the manufacturing stage. Composite components and the composite material they are made from are produced together. To achieve the desired material geometry features are included in their laminated structure that generate defects. To realise their full set of advantages new methodologies must be devised that support sustainable deployment integrated during production. At the manufacturing stage, many composite components are consigned to scrap before they go into service because of defect evolution. We are proposing a new non-invasive means to better monitor defect evolution and their affect on the final structural performance of the part. Once a composite component goes into service it is often heavier than necessary due to the design parameters necessary for safety assurance. Having an effective means of monitoring critical regions would motivate a means to reduce structural mass by reducing material usage, which in turn would allow increasing payload and or support a shift to heavier but more efficient designs. We are proposing a sensing methodology that can indicate a reduction in structural performance, as our sensors allow changes in through thickness strain to be captured. A laminated composite structure is designed to carry the load in the plane of the laminations as it is weak through the thickness of laminate. Any change in through thickness strain would be a prime indicator of a reduction in performance. At the end of the composite component's life there are currently limited options for recycling composites with 15% of the 110,000 tonnes of composites produced in the UK each year being reused at their end of life. Our sensors would support reuse and repurposing of large composite structures because a complete history of the component life cycle would be available through monitoring informing designers of the suitability to be deployed in other structural applications. To highlight the advantages of using the novel sensors we have chosen three important case studies/exemplars. The first is in the manufacture of thermosetting composites replacing the costly and time-consuming autoclave with microwave processing, which reduces energy consumption significantly. Our planar glass sensors will be non-conducting and so permit comprehensive in process monitoring, supporting uptake of microwave curing. As described above the through thickness strength of laminated composite materials is limited, hence 3D fibre architectures are being explored. Our second case study focuses on braiding process exploiting the sensor's geometry to fix it into a known position during the consolidation of the 3D fibre architecture in a thermoplastic matrix. Finally, we demonstrate the versatility of our sensors in an infield retrofitting application to extend the life of concrete infrastructure using composite repair patches.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N00762X/1
    Funder Contribution: 10,355,500 GBP

    Photonics is one of six EU "Key Enabling Technologies. The US recently announced a $200M programme for Integrated Photonics Manufacturing to improve its competiveness. As a UK response, the research proposed here will advance the pervasive technologies for future manufacturing identified in the UK Foresight report on the Future of Manufacturing, improving the manufacturability of optical sensors, functional materials, and energy-efficient growth in the transmission, manipulation and storage of data. Integration is the key to low-cost components and systems. The Hub will address the grand challenge of optimising multiple cross-disciplinary photonic platform technologies to enable integration through developing low-cost fabrication processes. This dominant theme unites the requirements of the UK photonics (and photonics enabled) industry, as confirmed by our consultation with over 40 companies, Catapults, and existing CIMs. Uniquely, following strong UK investment in photonics, we include most of the core photonic platforms available today in our Hub proposal that exploits clean room facilities valued at £200M. Research will focus on both emerging technologies having greatest potential impact on industry, and long-standing challenges in existing photonics technology where current manufacturing processes have hindered industrial uptake. Platforms will include: Metamaterials: One of the challenges in metamaterials is to develop processes for low-cost and high-throughput manufacturing. Advanced metamaterials produced in laboratories depend on slow, expensive production processes such as electron beam writing and are difficult to produce in large sizes or quantities. To secure industrial take up across a wide variety of practical applications, manufacturing methods that allow nanostructure patterning across large areas are required. Southampton hosts a leading metamaterials group led by Prof Zheludev and is well positioned to leverage current/future EPSRC research investments, as well as its leading intellectual property position in metamaterials. High-performance special optical fibres: Although fibres in the UV and mid-IR spectral range have been made, few are currently commercial owing to issues with reliability, performance, integration and manufacturability. This platform will address the manufacturing scalability of special fibres for UV, mid-IR and for ultrahigh power sources, as requested by current industrial partners. Integration with III-V sources and packaging issues will also be addressed, as requested by companies exploiting special fibres in laser-based applications. In the more conventional near-infrared wavelength regime, we will focus on designs and processes to make lasers and systems cheaper, more efficient and more reliable. Integrated Silicon Photonics: has made major advances in the functionality that has been demonstrated at the chip level. Arguably, it is the only platform that potentially offers full integration of all the key components required for optical circuit functionality at low cost, which is no doubt why the manufacturing giant, Intel, has invested so much. The key challenge remains to integrate silicon with optical fibre devices, III-V light sources and the key components of wafer-level manufacture such as on line test and measurement. The Hub includes the leading UK group in silicon photonics led by Prof Graham Reed. III-V devices: Significant advances have been made in extending the range of III-V light sources to the mid-IR wavelength region, but key to maximise their impact is to enable their integration with optical fibres and other photonics platforms, by simultaneous optimisation of the III-V and surrounding technologies. A preliminary mapping of industrial needs has shown that integration with metamaterial components optimised for mid-IR would be highly desirable. Sheffield hosts the EPSRC III-V Centre and adds a powerful light emitting dimension to the Hub.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M015130/1
    Funder Contribution: 2,508,180 GBP

    Glass has been a key material for many important advances in civilization; it was glass lenses which allowed microscopes to see bacteria for the first time and telescopes which revealed the planets and the moons of Jupiter. Glassware itself has contributed to the development of chemical, biological and cultural progress for thousands of years. The transformation of society with glass continues in modern times; as strands of glass optical fibres transform the internet and how we communicate. Today, glasses have moved beyond transparent materials, and through ongoing research have become active advanced and functional materials. Unlike conventional glasses made from silica or sand, research is now producing glasses from materials such as sulphur, which yields an unusual, yellow orange glass with incredibly varied properties. This next generation of speciality glasses are noted for their functionality and their ability to respond to optical, electrical and thermal stimuli. These glasses have the ability to switch, bend, self-organize and darken when exposed to light, they can even conduct electricity. They transmit light in the infra-red, which ordinary glass blocks and the properties of these glasses can even change, when strong light is incident upon them. The demand for speciality glass is growing and these advanced materials are of national importance for the UK. Our businesses that produce and process materials have a turnover of around £170 billion per annum; represent 15% of the country's GDP and have exports valued at £50 billion. With our proposed research programme we will produce extremely pure, highly functional glasses, unique to the world. The aims of our proposed research are as follows: - To establish the UK as a world-leading speciality glass research and manufacturing facility - To discovery new and optimize existing glass compositions, particularly in glasses made with sulphur - To develop links with UK industry and help them to exploit these new glass materials - To demonstrate important new electronic, telecommunication, switching devices from these glasses - To partner other UK Universities to explore new and emerging applications of speciality glass To achieve these goals we bring together a world-class, UK team of physicists, chemists, engineers and computer scientists from Southampton, Exeter, Oxford, Cambridge and Heriot-Watt Universities. We are partners with over 15 UK companies who will use these materials in their products or contribute to new ways of manufacturing them. This proposal therefore provides a unique opportunity to underpin a substantial national programme in speciality-glass manufacture, research and development.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M020916/1
    Funder Contribution: 700,270 GBP

    In this proposal we will design, fabricate and employ a novel multiple materials additive manufacturing (MMAM) equipment to enable us to make optical fibre preforms (both in conventional and microstructured fibre geometries) in silica and other host glass materials. In existing low-loss fibre preform fabrication methods, based on either chemical vapour deposition technique for conventional solid index guiding fibres or 'stack and draw' process for micro-structured fibre, it is very difficult to control composition in 3D. Our proposed MMAM can be utilised to produce complex preforms, which is otherwise too difficult or time consuming or currently impossible to achieve by the existing fabrication techniques. This will open up a route to manufacture novel fibre structures in silica and other glasses for a wide range of applications, covering from telecommunications, sensing, lab-in-a-fibre, metamaterial fibre, to high-power laser, and subsequently we are expected to gain significant economic growth in the future.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.