Powered by OpenAIRE graph
Found an issue? Give us feedback

University of California, San Diego

University of California, San Diego

37 Projects, page 1 of 8
  • Funder: UK Research and Innovation Project Code: NE/N011716/1
    Funder Contribution: 505,895 GBP

    The geological record offers an invaluable window into the different ways earth's climate can operate. The most recent large-scale changes in earth's climate, prior to modern climate change, were the Pleistocene glacial cycles, which feature growth and disintegration of large ice sheets, rapid shifts in major rain belts, and abrupt changes in ocean circulation. Changes in atmospheric CO2 concentrations, reconstructed from air bubbles in ice cores, are intimately linked with these ice age climate events. Indeed the close coupling of CO2 and temperature over glacial-interglacial cycles has become an iconic image in climate science, a poster child for the importance of CO2 in climate, and the natural template against which to compare current man-made CO2 rise. However despite the high profile of glacial-interglacial CO2 change, we still don't fully understand its cause. The leading hypotheses for glacial CO2 change involve increased CO2 uptake by the ocean during ice ages, which is vented to the atmosphere during deglaciation. However despite decades of work these hypotheses have had few direct tests, due to a lack of data on CO2 storage in the glacial ocean. One of the most glaring holes in our understanding of ice age CO2 and climate change is the behaviour of the Pacific. This basin contains half of global ocean volume, and ~30 times more CO2 than the atmosphere, and so its behaviour will have global impact. It has also recently been suggested that the North Pacific may play an active role in deglacial CO2 rise, with local deep water formation helping to release CO2 from the deep ocean to the atmosphere. If correct, this hypothesis provides a new view of Earth's climate system, with deep water able to form in each high latitude basin in the recent past, and the North Pacific potentially playing a pivotal role in deglaciation. However few data exist to test either the long-standing ideas on the Pacific's role in glacial CO2 storage, nor the more recent hypothesis that North Pacific deep water contributed to rapid deglacial CO2 rise. Given the size of the Pacific CO2 reservoir, our lack of knowledge on its behaviour is a major barrier to a full understanding of glacial-interglacial CO2 change and the climate of the ice ages. This proposal aims to transform our understanding of ice age CO2 and climate change, by investigating how the deep North Pacific stored CO2 during ice ages, and released it back to the atmosphere during deglaciations. We will use cutting-edge geochemical measurements of boron isotopes in microfossil shells (which record the behaviour of CO2 in seawater) and radiocarbon (which records how recently deep waters left the surface ocean), on recently collected samples from deep ocean sediment cores. By comparing these new records to other published data, we will be able to distinguish between different mechanisms of CO2 storage in the deep Pacific, and to test the extent of North Pacific deep water formation and CO2 release during the last deglaciation. We will also improve the techniques used to make boron isotope measurements, and add new constraints on the relationship between boron isotopes and seawater CO2 chemistry, which will help other groups using this technique to study CO2 change. To help us understand more about the mechanisms of changes in CO2 and ocean circulation, and provide synergy with scientists in other related disciplines, we will compare our data to results from earth system models, and collaborate with experts on nutrient cycling and climate dynamics. Our project will ultimately improve understanding of CO2 exchange between the ocean and the atmosphere, which is an important factor for predicting the path of future climate change.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V011863/1
    Funder Contribution: 649,267 GBP

    Depletion of stratospheric ozone allows larger doses of harmful solar ultraviolet (UV) radiation to reach the surface leading to increases in skin cancer and cataracts in humans and other impacts, such as crop damage. Ozone also affects the Earth's radiation balance and, in particular, ozone depletion in the lower stratosphere (LS) exerts an important climate forcing. While most long-lived ozone-depleting substances (ODSs, e.g. chlorofluorocarbons, CFCs) are now controlled by the United Nations Montreal Protocol and their abundances are slowly declining, there remains significant uncertainty surrounding the rate of ozone layer recovery. Although signs of recovery have been detected in the upper stratosphere and the Antarctic, this is not the case for the lower stratosphere at middle and low latitudes. In fact, contrary to expectations, ozone in this extrapolar lower stratosphere has continued to decrease (by up to 5% since 1998). The reason(s) for this are not known, but suggested causes include changes in atmospheric dynamics or the increasing abundance of short-lived reactive iodine and chlorine species. We will investigate the causes of this ongoing depletion using comprehensive modelling studies and new targeted observations of the short-lived chlorine substances in the lower stratosphere. While the Montreal Protocol has controlled the production of long-lived ODSs, this is not the case for halogenated very short-lived substances (VSLS, lifetimes <6 months), based on the belief that they would not be abundant or persistent enough to have an impact. Recent observations suggest otherwise, with notable increases in the atmospheric abundance of several gases (CH2Cl2, CHCl3), due largely to growth in emissions from Asia. A major US aircraft campaign based in Japan in summer 2021 will provide important new information on how these emissions of short-lived species reach the stratosphere via the Asian Summer Monsoon (ASM). UEA will supplement the ACCLIP campaign by making targeted surface observations in Taiwan and Malaysia which will help to constrain chlorine emissions. The observations will be combined with detailed and comprehensive 3-D modelling studies at Leeds and Lancaster, who have world-leading expertise and tools for the study of atmospheric chlorine and iodine. The modelling will use an off-line chemical transport model (CTM), ideal for interpreting observations, and a coupled chemistry-climate model (CCM) which is needed to study chemical-dynamical feedbacks and for future projections. Novel observations on how gases are affected by gravitational separation will be used to test the modelled descriptions of variations in atmospheric circulation. The CTM will also be used in an 'inverse' mode to trace back the observations of anthropogenic VSLS to their geographical source regions. The models will be used to quantify the flux of short-lived chlorine and iodine species to the stratosphere and to determine their impact on lower stratospheric ozone trends. The impact of dynamical variability will be quantified using the CTM and the drivers of this determined using the CCM. The model results will be analysed using the same statistical models used to derive the decreasing trend in ozone from observations, including the Dynamical Linear Model (DLM). Overall, the results of the model experiments will be synthesised into an understanding of the ongoing decrease in lower stratospheric ozone. This information will then be used to make improved future projections of how ozone will evolve, which will feed through to the policy-making process (Montreal Protocol) with the collaboration of expert partners. The results of the project will provide important information for future international assessments e.g. WMO/UNEP and IPCC reports.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K000985/1
    Funder Contribution: 58,079 GBP

    The outer layer of the earth is composed of rigid tectonic plates, like a cracked eggshell. These plates slide around the surface of the planet over a weaker, hotter layer below. The transition from rigid plate to the mantle below is fundamental to plate tectonics and our existence on the planet. However, the definition of the plate, i.e., their thickness, defining mechanism, and degree of coupling to the layer below are not well-known. I will use global seismic imaging to understand the thickness and defining mechanism of the Earth's oceanic plates. The ocean plates cover 70% of Earth's surface, yet are rarely mapped at high resolution given the remoteness, and the difficulty and cost of deploying seismometers to the bottom of a 4 km deep ocean. I have developed a new methodology to map the plates in locations where station coverage is sparse, as it is beneath the oceans. I use the SS waveform, which is an S wave that has bounced once at Earth's surface. Subtle variations in the character of the SS wave give information on the depth and character of the base of the tectonic plate in the region of the bouncepoint. I will use a newly compiled global database (1990 - 2011) which is nearly 4TB in size, and represents about four-times the data in my previous investigations. The significance is that I will be have nearly perfect resolution across all ocean basins, enabling global comparisons and a unified view of the tectonic plate. The definition of the plate has implications for many processes that impact human existence. It has a fundamental control on how plates move. This includes the generation of earthquakes, volcanoes, and tsunamis. Therefore a better understanding will lead to better hazard assessment and mitigation of natural disasters. In addition, plate thickness and strength directly affects uplift and subsidence of the tectonic plate. These forces impact mountain building and sea level rise, and are therefore important factors in understanding climate change. The results from this study will change text books, and clarify fundamental questions. I will develop a better understanding of the definition of a tectonic plate, including its formation and evolution. Understanding the ocean plates is fundamental to any tectonic setting in that they likely play a large role in the formation of the continents. Overall, this work will deepen our understanding of plate tectonics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T013613/1
    Funder Contribution: 237,643 GBP

    Networks of coupled dynamical nodes are ubiquitous in science and technology and influence many parts of our everyday lives. Indeed, ecological networks of interacting species, neurons in the brain and coupled rotors as a model for a power grid are examples of networks of coupled oscillatory nodes. Such networks can give rise to a wide range of collective dynamics - the joint dynamics of the coupled nodes - such as synchrony. Crucially, the network function or dysfunction often depends on the collective dynamics. For example, neurological diseases, such as Parkinson's disease, have long been associated with excessive neural synchronization. The collective dynamics of a network, that is, whether the nodes synchronize or show other dynamical behaviour, depends on the network structure and interactions. The network structure determines whether a node influences other nodes. The network interactions determine how a node influences other nodes. In many real-world networks, the network interactions include "higher-order" coupling, for example, the influence of one node onto another may depend on the state of a third node. However, such interactions are often omitted in commonly studied networks. The proposed project will elucidate the collective dynamics of coupled oscillator networks. The main question we address here is how network structure and interactions - with a particular focus on higher-order interactions - shape the collective dynamics. We will investigate objects called heteroclinic structures and elucidate how they organize the dynamics for interactions that are relevant for real-world networks. The project will yield new results in dynamical systems theory and their application. Moreover, we will investigate how the results can lead to new ways to control dynamics. Insights into how network structure and interactions shape the dynamics can be employed to understand what part of the network one has to tune to get oscillators to synchronize (or not). Since Parkinson's disease has been associated with excessive synchrony, this could eventually lead to new ways to tune network parameter to restore healthy brain functionality.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/H013504/1
    Funder Contribution: 348,618 GBP

    Low molecular weight thiol molecules play an important role in antibiotic drug resistance. There are many enzymes inside cells which facilitate the reaction of these thiol molecules with antibiotics and their subsequent detoxification and removal from the cell. For this purpose, humans (and other mammals) use a thiol molecule called glutathione, which is made from amino acids building blocks. However, not all organisms are able to produce and utilise glutathione. Recently, we have discovered a novel class of carbohydrate-like biothiol, called Bacillithiol, amongst a number of microbial pathogens. These include bacteria associated with anthrax, food poisoning, urinary tract infections and MRSA. The aim of this project is to identify and characterise the ways in which these bacteria utilise bacillithiol to detoxify various antibiotics. Understanding the differences between glutathione and bacillithiol and their respective enzymes could provide exciting opportunities to design new drugs that will selectively target antibiotic detoxification mechanisms in drug resistant bacteria without affecting the glutathione processing enzymes found in humans.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.