Powered by OpenAIRE graph
Found an issue? Give us feedback

LIEBHERR AEROSPACE TOULOUSE SAS

Country: France

LIEBHERR AEROSPACE TOULOUSE SAS

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
19 Projects, page 1 of 4
  • Funder: European Commission Project Code: 807081
    Overall Budget: 158,178,000 EURFunder Contribution: 113,185,000 EUR

    The Systems ITD will develop and build highly integrated, high TRL demonstrators in major areas such as power management, cockpit, wing, landing gear, to address the needs of future generation aircraft in terms of maturation, demonstration and Innovation.

    more_vert
  • Funder: European Commission Project Code: 945583
    Overall Budget: 142,140,000 EURFunder Contribution: 106,688,000 EUR

    Main objective for the Clean Sky 2 Large Passenger Aircraft Programme (LPA) is to further mature and validate key technologies such as advanced wings and empennages design, making use of hybrid laminar airflow wing developments, the integration of most advanced engines into the large passenger aicraft aircraft design as well as an all-new next generation fuselage cabin and cockpit-navigation. Dedicated demonstrators are dealing with Research on best opportunities to combine radical propulsion concepts, and the opportunities to use scalled flight testing for the maturation and validation of these concepts via scaled flight testing. Components of Hybrid electric propulsion concepts are developed and tested in a major ground based test rig. The LPA program is also contributing with a major workpackage to the E-Fan X program. The R&T activities in the LPA program is split in 21 so-called demonstrators. In the project period 2020 and 2021 a substantial number of hardware items ground and flight test items will b

    more_vert
  • Funder: European Commission Project Code: 604981
    more_vert
  • Funder: European Commission Project Code: 101140559
    Overall Budget: 52,512,000 EURFunder Contribution: 34,993,200 EUR

    Green hydrogen as a fuel offers the possibility to significantly reduce or even eliminate all of aircraft’s greenhouse gas emissions. When liquid hydrogen (LH2) is used in fuel cells (FC) for power generation, this results in no CO2, no SOx and no NOx emissions. The best way to achieve this solution is to develop a hydrogen propulsive FC system as an integral part of a new LH2 aircraft concept. This means moving away from the current “plug and play” (separate motor development and aircraft architecture) philosophy towards a disruptive integrated way of development, which requires a co-creation approach of the propulsion system and the aircraft. FAME follows this approach by collaborative research and development between on one hand partners involved in development of the needed systems of the fuel cell and on the other hand Airbus as and aircraft designer, manfacturer und integrator. Thereby it is ensured that on all levels from material over component and sub-system up to propulsion system on aircraft level an optimization is realized. The focus of FAME is on developing a complete compact high-efficiency full electric propulsion system based on LH2 as energy source for short to medium range (SMR) aircraft. FAME will develop all the subsystems which are needed and integrate these in a MW FC Propulsion System ground demonstrator with the vision to scale it up to aircraft level (sufficient for SMR aircraft). FAME shows the feasibility of a multi-MW FC Propulsion system for hydrogen-powered SMR aircraft. The system will provide the basis for Clean Aviation in phase 2 to undergo a system flight test.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-12-VPTT-0005
    Funder Contribution: 821,148 EUR

    The increase of power density is one of the main challenges from both industrial and societal points of view in all industrial applications. This trend lasts for decades in the aeronautic industry because of weight reduction objective. The automotive industry currently undergoes a profound mutation from energetic point of view. Indeed, the miniaturization of the vehicle and its components and the progressive electrification lead together to an increase of the energy fluxes which requires. The management of the corresponding heat fluxes, i.e. their evacuation (cooling) or redirection is a key of this transformation both in energetic and financial aspects. In this way, the Pulsating Heat Pipe (PHP), invented in the 90s, is a promising solution for controlling of extremely high heat fluxes (>200 W/cm2). Indeed, the PHP is a relatively simple structure: a capillary tube of circular section bent into many turns and partially filled with a two-phase fluid that form inside a sequence of liquid plug separated by vapor bubbles. One bend of each loop is in thermal contact with the hot source and the other with the cold one. In addition, the PHP is generally is more efficient than the other type of heat pipes: the liquid plugs movement from cold to hot source generate not only the latent heat exchange by phase transition (evaporation/condensation) but also a convective heat transfer. However, contrary to other types of heat pipes, is functioning is non-stationary, thus more difficult to understand and to model. Today, there is no tool to design a PHP. Numerous scientific problems are still to overcome: wall film effects on the dynamic behavior of the vapor bubbles (viscous friction), on the liquid pugs, on the heat transfer, the yet unknown vapor thermodynamic state, etc. For this purpose a part of the project tasks will focus on the understanding of the PHP’s elementary mechanisms, with minimal system complexity (single-bubble PHP). Within the project, these findings will help to improve the existing numerical code that will be used next to design the multi-bubble PHP for application in both automotive and aeronautic industries. These multi-bubbles PHP will be developed for validation of the code and also to obtain complementary information on transient behavior of the PHP and impact of perturbations (vibration). The project will be carried out by three academic laboratories whose expertise on the PHP is well established (CEA/SBT, CETHIL and Institute P’) and two industrial partners belonging to different industrial domains (Liebherr Aerospace Toulouse and PSA).

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.