Powered by OpenAIRE graph
Found an issue? Give us feedback

Unilever UK Central Resources Ltd

Country: United Kingdom

Unilever UK Central Resources Ltd

28 Projects, page 1 of 6
  • Funder: UK Research and Innovation Project Code: EP/M02959X/1
    Funder Contribution: 724,957 GBP

    Many industrial processing operations depend on feed materials that are fine powders with poor handling characteristics, which have to be rectified by granulation to form coarser granules. Generally wet granulation is employed, in which a binder is added to the powder in a mixer usually in batch processes. Continuous Twin Screw Granulation (TSG) has considerable potential, eg in the pharmaceutical sector, because of the flexibility in throughput and equipment design, reproducibility, short residence times, smaller liquid/solid ratios and also the ability to granulate difficult to process formulations. However, there remain significant technical issues that limit its widespread use and a greater understanding of the process is required to meet regulatory requirements. Moreover, encapsulated APIs (Active Pharmaceutical Ingredients) are of increasing interest and the development of a TSG process that did not damage such encapsulates would significantly extend applications. Experimental optimisation of TSG is expensive and often sub-optimal because of the high costs of APIs and does not lead to a more generic understanding of the process. Computational modelling of the behaviour of individual feed particles during the process will overcome these limitations. The Distinct Element Method (DEM) is the most widely used method but has rarely been applied to the number of particles in a TSG extruder (~ 55 million) and such examples involve simplified interparticle interactions e.g. by assuming that the particles are smooth and spherical and any liquid is present as discrete bridges rather than the greater saturation states associated with granulation. The project will be based on a multiscale strategy to develop advanced interaction laws that are more representative of real systems. The bulk and interfacial properties of a swelling particulate binder such as microcrystalline cellulose will be modelled using Coarse-grained Molecular Dynamics to derive inputs into a meso-scale Finite Discrete Element Method model of formulations that include hard particles and a viscous polymeric binder (hydroxypropylcellulose). Elastic particles (e.g. lactose and encapsulates) with viscous binder formulations will be modelled using the Fast Multi-pole Boundary Element Method. These micro- and meso-scale models will be used to provide closure for a DEM model of TSG. It will involve collaboration with the Chinese Academy of Science, which has pioneered the application of massively parallel high performance computing with GPU clusters to discrete modelling such as DEM, albeit with existing simpler interaction laws. An extensive experimental programme will be deployed to measure physical inputs and validate the models. The screw design and operating conditions of TSG for the formulations considered will be optimised using DEM and the results validated empirically. Optimisation criteria will include the granule size distribution, the quality of tablets for granules produced from the lactose formulation and the minimisation of damage to encapsulates. The primary benefit will be to provide a modelling toolbox for TSG for enabling more rapid and cost-effective optimisation, and allow encapsulated APIs to be processed. Detailed data post-processing will elucidate mechanistic information that will be used to develop regime performance maps. The multiscale modelling will have applications to a wide range of multiphase systems as exemplified by a large fraction of consumer products, catalyst pastes for extrusion processes, and agriculture products such as pesticides. The micro- and mesoscopic methods have generic applications for studying the bulk and interfacial behaviour of hard and soft particles and also droplets in emulsions. The combination of advanced modelling and implementation on massively parallel high performance GPU clusters will allow unprecedented applications to multiphase systems of enormous complexity.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015633/1
    Funder Contribution: 5,380,330 GBP

    Sustainability is the crucial factor in the future of the UK's chemistry-using industries with all companies sharing the vision of lower carbon footprints and reduced use of precious resources. However this sustainability can only be achieved if industry can recruit the right people. This CDT addresses the shortage of PhD graduates who have the skills needed to implement sustainable technologies. We will provide co-ordinated interdisciplinary training to produce a new generation of innovative PhD scientists and engineers with the skills needed by industry. Using the strong collaboration between Chemistry and Engineering at Nottingham as a springboard, we will launch a much wider integrated partnership involving chemistry, engineering, food science, and business to create more sustainable processes and compounds for the chemistry-using industries. This approach is strongly endorsed by our industrial partnerships, developed over many years, including companies from the major chemistry-using sectors. The demand for chemistry knowledge, skills, technologies and training will grow dramatically in the period 2015-2030 to meet the global challenges of healthcare and better medicines for an ageing population, safer agrochemicals to aid food production for an increasing population, and the need for ever smarter advanced materials for new and energy efficient technologies. However, chemical manufacturing is demanding in terms of use of energy and natural resources, as well as its impact on the environment, and consumes far more resource than is sustainable. Hence there is a need to develop new chemical and manufacturing solutions that are safe, efficient and, above all, sustainable. Sustainability is the issue facing the entire global chemicals industry, and our vision is to train a new generation of scientists to find innovative "green" resource and energy efficient solutions that have the lowest possible environmental impact, demonstrate social responsibility, and make a positive contribution to economic growth. Our proposed EPSRC Centre for Doctoral Training (CDT) in Sustainable Chemistry at Nottingham, will be highly interdisciplinary. It will not only capitalise on the strong links between Chemistry and Engineering, but will also reach into the Biosciences, Food Science and the Business School. The CDT builds upon our international track record in green chemistry, and will develop Nottingham's unique combination of skills and technologies in synthetic methodology, green chemistry, materials science, biotransformations, microwave technologies, food science, supply chains and business development, combined with high level commercial input through our very significant industrial involvement. Our CDT will provide world class training and our PhD graduates will have a full understanding of the sustainability impact of their work, with consideration for its wider environmental, societal and economic benefits. Our training framework, will produce "industry ready" PhDs who will have an excellent understanding of sustainability for the chemicals sector. These industries are well aware of the major issues, and they need new solutions and a new generation of trained researcher to deliver those solutions. By engaging with industry from an early stage, the CDT will deliver PhD training that addresses these concerns. The CDT will be based in an iconic new building, the UK's first Carbon Neutral Laboratory. This unique facility will provide a sustainable and energy efficient working environment that we hope will help inspire, motivate and ultimately deliver PhD graduates with a much better set of skills to minimise environmental impact and build sustainability into their work. The CDT will also serve as a global hub to visiting researchers wishing to develop expertise in sustainable chemistry, and to engage the public through Nottingham's unrivalled outreach activities such as the The Periodic Table of Videos.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N004884/1
    Funder Contribution: 6,650,590 GBP

    Society faces major challenges that require disruptive new materials solutions. For example, there is a worldwide demand for materials for sustainable energy applications, such as safer new battery technologies or the efficient capture and utilization of solar energy. This project will develop an integrated approach to designing, synthesizing and evaluating new functional materials, which will be developed across organic and inorganic solids, and also hybrids that contain both organic and inorganic modules in a single solid. The UK is well placed to boost its knowledge economy by discovering breakthrough functional materials, but there is intense global completion. Success, and long-term competitiveness, is critically dependent on developing improved capability to create such materials. All technologically advanced nations have programmes that address this challenge, exemplified by the $100 million of initial funding for the US Materials Genome Initiative. The traditional approach to building functional materials, where the properties arise from the placement of the atoms, can be contrasted with large-scale engineering. In engineering, the underpinning Newtonian physics is understood to the point that complex structures, such as bridges, can be constructed with millimetre precision. By contrast, the engineering of functional materials relies on a much less perfect understanding of the relationship between structure and function at the atomic level, and a still limited capability to achieve atomic level precision in synthesis. Hence, the failure rate in new materials synthesis is enormous compared with large-scale engineering, and this requires large numbers of researchers to drive success, placing the UK at a competitive disadvantage compared to larger countries. The current difficulty of materials design at the atomic level also leads to cultural barriers: in building a bridge, the design team would work closely with the engineering construction team throughout the process. By contrast, the direct, day-to-day integration of theory and synthesis to identify new materials is not common practice, despite impressive advances in the ability of computation to tackle more complex systems. This is a fundamental challenge in materials research. This Programme Grant will tackle the challenge by delivering the daily working-level integration of computation and experiment to discover new materials, driven by a closely interacting team of specialists in structure and property prediction, measurement and materials synthesis. Key to this will be unique methods developed by our team that led to recent landmark publications in Science and Nature. We are therefore internationally well placed to deliver this timely vision. Our approach will enable discovery of functional materials on a much faster timescale. It will have broad scope, because we will develop it across materials types with a range of targeted properties. It will have disruptive impact because it uses chemical understanding and experiment in tandem with calculations that directly exploit chemical knowledge. In the longer term, the approach will enable a wide range of academic and industrial communities in chemistry and also in physics and engineering, where there is often a keener understanding of the properties required for applications, to design better materials. This approach will lead to new materials, such as battery electrolytes, materials for information storage, and photocatalysts for solar energy conversion, that are important societal and commercial targets in their own right. We will exploit discoveries and share the approach with our commercial partners via the Knowledge Centre for Materials Chemistry and the new Materials Innovation Factory, a ÂŁ68 million UK capital investment in state-of-the-art materials research facilities for both academic and industrial users. Industry and the Universities commit 55% of the project cost.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015153/1
    Funder Contribution: 3,628,860 GBP

    The proposal seeks funds to renew and refresh the Centre for Doctoral Training in Formulation Engineering based in Chemical Engineering at Birmingham. The Centre was first funded by EPSRC in 2001, and was renewed in 2008. In 2011, on its 10th anniversary, the Centre received one of the Diamond Jubilee Queen's Anniversary Prizes, for 'new technologies and leadership in formulation engineering in support of UK manufacturing'. The scheme is an Engineeering Doctoral Centre; students are embedded in their sponsoring company and carry out industry-focused research. Formulation Engineering is the study of the manufacture of products that are structured at the micro-scale, and whose properties depend on this structure. In this it differs from conventional chemical engineering. Examples include foods, home and personal care products, catalysts, ceramics and agrichemicals. In all of these material formulation and microstructure control the physical and chemical properties that are essential to its function. The structure determines how molecules are delivered or perceived - for example, in foods delivery is of flavour molecules to the mouth and nose, and of nutritional benefit to the GI tract, whilst in home and personal care delivery is to skin or to clothes to be cleaned, and in catalysis it is delivery of molecules to and from the active site. Different industry sectors are thus underpinned by the same engineering science. We have built partnerships with a series of companies each of whom is world-class in its own field, such as P&G, Kraft/Mondelez, Unilever, Johnson Matthey, Imerys, Pepsico and Rolls Royce, each of which has written letters of support that confirm the value of the programme and that they will continue to support the EngD. Research Engineers work within their sponsoring companies and return to the University for training courses that develop the concepts of formulation engineering as well as teaching personal and management skills; a three day conference is held every year at which staff from the different companies interact and hear presentations on all of the projects. Outputs from the Centre have been published in high-impact journals and conferences, IP agreements are in place with each sponsoring company to ensure both commercial confidentiality and that key aspects of the work are published. Currently there are 50 ongoing projects, and of the Centre's graduates, all are employed and more than 85% have found employment in formulation companies. EPSRC funds are requested to support 8 projects/year for 5 years, together with the salary of the Deputy Director who works to link the University, the sponsors and the researchers and is critical to ensure that the projects run efficiently and the cohorts interact well. Two projects/year will be funded by the University (which will also support a lecturer, total >ÂŁ1 million over the life of the programme) and through other sources such as the 1851 Exhibition fund, which is currently funding 3 projects. EPSRC funding will leverage at least ÂŁ3 million of direct industry contributions and ÂŁ8 million of in-kind support, as noted in the supporting letters. EPSRC funding of ÂŁ4,155,480 will enable a programme with total costs of more than ÂŁ17 million to operate, an EPSRC contribution of 24% to the whole programme.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K014773/1
    Funder Contribution: 1,859,980 GBP

    There has been a global shift towards the use of biomass as a source of fuels and chemicals necessitated by decreasing fossil reserves, increasing oil prices, security of supply and environmental issues. It has also become clear that the manufacturing industry is embracing this change and has clearly stated its aims to develop sustainable and efficient routes to manufacturing products and hence reducing their dependence on fossil feedstocks and environmental impact. To academics, this represents a huge opportunity to generate new scientific advances in the knowledge that their application will have strong industrial support. In addition to be motivated by scientific curiosity, we scientists need to acknowledge our social responsibility to partner with the manufacturing industry to contribute to a better society and more sustainable future. Advances in the development of routes to renewable chemicals have been observed in recent years, however there are still major issues remaining regarding the efficiency and viability of these routes to deliver renewable chemicals economically. Very importantly, many recent advances in biorefinary technologies have been based on feedstocks that compete with food or feed such as starch or vegetable oils. Large-scale implementation of these technologies can have disastrous consequences for food security worldwide. Therefore, it is paramount that new biorefinary technologies are based upon sources of biomass that do not compete with food production. The overarching aim of this proposal is to develop the next generation of structured polymeric materials that will enable to efficiently produce platform chemicals and bio-surfactants from waste biomass, integrating state of the art technologies for biomass activation and separation in one-pot processes. This project is built upon the expertise in green chemistry, biomass activation, catalysis and materials science from the partners in York and Liverpool and their strong engagement with industry. State of the art facilities in high-throughput materials discovery and characterisation will be utilized, and advanced techniques in biomass activation, such as supercritical CO2 (scCO2) extraction, and microwave pyrolysis and hydrolysis reactors up to scales of 100L will be used.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.