Powered by OpenAIRE graph
Found an issue? Give us feedback

HUN-REN CENTRE FOR ENERGY RESEARCH

HUN-REN ENERGIATUDOMANYI KUTATOKOZPONT
Country: Hungary

HUN-REN CENTRE FOR ENERGY RESEARCH

51 Projects, page 1 of 11
  • Funder: European Commission Project Code: 881603
    Overall Budget: 150,000,000 EURFunder Contribution: 150,000,000 EUR

    This proposal describes the third core project of the Graphene Flagship. It forms the fourth phase of the FET flagship and is characterized by a continued transition towards higher technology readiness levels, without jeopardizing our strong commitment to fundamental research. Compared to the second core project, this phase includes a substantial increase in the market-motivated technological spearhead projects, which account for about 30% of the overall budget. The broader fundamental and applied research themes are pursued by 15 work packages and supported by four work packages on innovation, industrialization, dissemination and management. The consortium that is involved in this project includes over 150 academic and industrial partners in over 20 European countries.

    more_vert
  • Funder: European Commission Project Code: 654000
    Overall Budget: 12,080,900 EURFunder Contribution: 10,863,400 EUR

    Today’s society is being transformed by new materials and processes. Analytical techniques underpin their development and neutrons, with their unique properties, play a pivotal role in a multi-disciplinary, knowledge-based approach. Industry and the neutron research community must however work together more closely to enhance their innovation potential. Neutrons are only available at large scale facilities (LSF’s), presenting specific challenges for outreach. National and European initiatives have combined to create a user community of almost 10000, mainly academia-based users, which is supported by an ecosystem of about 10, often world-class national facilities and the European facility, the Institute Laue Langevin. Europe leads neutron science and is investing almost 2B€ in the European Spallation Source (ESS), its construction, like Horizon 2020, spanning the period 2014-2020. SINE2020, world-class Science and Innovation with Neutrons in Europe in 2020, is therefore a project with two objectives; preparing Europe for the unique opportunities at ESS in 2020 and developing the innovation potential of neutron LSF’s. Common services underpin the European research area for neutrons. New and improved services will be developed in SINE2020, by the LSF’s and partners in 13 countries, in a holistic approach including outreach, samples, instrumentation and software. These services are the key to integrating ESS in the European neutron ecosystem, ensuring scientific success from day one. They are also the basis for facilitating direct use of neutron LSF’s by industry. Particular emphasis is placed on the industry consultancy, which will reach out to industry and develop a business model for direct, industry use of LSF’s in 2020, and data treatment, exploiting a game-changing opportunity at LSF’s to adopt a common software approach in the production of scientific results.

    more_vert
  • Funder: European Commission Project Code: 101103762
    Funder Contribution: 157,622 EUR

    The role of solar energy and the need for clean fuels (such as hydrogen) is essential in achieving a net zero future. A sustainable way of green hydrogen generation is photoelectrochemical water splitting, which uses only solar energy and water to produce green hydrogen and concomitantly oxygen. This technology, however, with the currently demonstrated efficiencies is not cost-competitive. A less explored application of photoelectrochemical devices is the generation of a value-added oxidation product from abundant polymeric waste materials (e.g., biomass, plastics), instead of the low market value oxygen. Such a device can lead to a reduced energy consumption (compared to water splitting), as well as high market value anodic product. Excitingly, in this approach green hydrogen is generated as a by-product (virtually free) on the cathode. The SolarHyValue project proposes the use of perovskite and organic photoactive layers with a protective sheet to fabricate stable photoelectrodes for simultaneous solar hydrogen and value-added product generation. Efficient bias-free operation of waste valorisation with photoelectrochemical device was only demonstrated with expensive precious metal catalysts (platinum, palladium). The proposed large bandgap caesium lead halide perovskite layer has the potential to enable bias-free, and at the same time efficient photocurrent generation even with the use of solely earth-abundant materials. This will be allowed by the novel device design and the development of a transition metal dichalcogenide (MoS2) catalyst doped at its basal plane with non-precious metal heteroatoms, resulting in excellent catalytic activity. Through increased scientific understanding the SolarHyValue project will lead to the first ever demonstration of a photoelectrochemical device that allows simultaneous, bias-free production of solar hydrogen and value-added product relying solely on inexpensive materials.

    more_vert
  • Funder: European Commission Project Code: 696656
    Overall Budget: 89,000,000 EURFunder Contribution: 89,000,000 EUR

    This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.

    more_vert
  • Funder: European Commission Project Code: 847656
    Overall Budget: 4,156,900 EURFunder Contribution: 3,184,940 EUR

    The Reduction of Radiological Consequences of design basis and extension Accidents (R2CA) project targets the development of harmonized methodologies and innovative management approach and safety devices for the evaluation and for the reduction of the consequences of DBA and DEC-A accidents in operating and foreseen nuclear power plants in Europe. For both purposes development of methodologies will be conducted with the goal of reassessing the safety margins using less conservative approaches and considering the new risks that rose from the original design or design extension phases. This will reinforce the confidence on these safety margins for conditions up to the extended design domain, will allow the identification of new accident management measures and devices and will support the optimization of the potential associated emergency population protection measures. Improvement of evaluations tools will be supported by the reassessment of the existing experimental and analytical databases. The efficiency of the approach will be demonstrated by comparing at start and then at the end of the project the results of the evaluation of a series of reactor cases selected by a senior expert group among two main categories: loss of coolant accidents and steam generator tube rupture accidents. Detailed analyzes of these reactor cases simulations will suggest the development of harmonized evaluation methodologies. The project will include also innovative actions to estimate the pros and cons of potential new accident management measures and devices, to explore the potential switch of prognosis evaluation tools to the diagnosis of on-going fuel cladding failure and to explore the potentiality for these accidental situations of advanced technological fuels.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.