
TWI Ltd
TWI Ltd
7 Projects, page 1 of 2
assignment_turned_in Project2021 - 2025Partners:Sandvik Coromant UK Ltd, RENISHAW, RENISHAW, All British Precision Ltd, GKN Aerospace Services Ltd +14 partnersSandvik Coromant UK Ltd,RENISHAW,RENISHAW,All British Precision Ltd,GKN Aerospace Services Ltd,GKN Aerospace Services Ltd,Renishaw plc (UK),Bath Spa University,Nikken UK,All British Precision Ltd,Nikken UK,University of Bath,Sandvik (United Kingdom),TWI Ltd,Sandvik Coromant UK Ltd,University of Bath,Renishaw (United Kingdom),The Welding Institute,GKN Aerospace Services LtdFunder: UK Research and Innovation Project Code: EP/V055011/1Funder Contribution: 1,198,920 GBPUK is the world's 9th largest manufacturing country [1]. Machining is one of the most used processes for producing precision parts used in aerospace and automotive industries. The demand for high performance and quality assured parts requires high precision, often over a large scale resulting in increased manufacturing costs. It has become a rule of thumb that precise machines with stiff structures and large foot prints are required for machining precision parts. As a consequence, machining costs grow exponentially as the precision increases. This has resulted in the development of expensive and non-value adding off-line verification and error compensation methods. However, these methods do not take the impact of cutting tool/workpiece geometry, cutting forces and time variable errors into account. The uptake of additive manufacturing has also resulted in generation of optimised parts often with complex geometries and thin and high walls which require finish machining with long slender tools. In these scenarios, cutting forces can bend the tool and the workpiece resulting in geometrical inaccuracies. Fluctuating cutting forces result in chatter leading to damaged surface integrity and short tool life. Using new sensors, advanced signal processing and intelligent control systems can provide the ability to detect geometrical and surface anomalies when machining, and provide data to generate strategies to prevent costly mistakes and poor quality. However, off-the-shelf sensors and data transmission devices are not necessarily suitable for monitoring and controlling machining processes. Existing high precision sensors are either too large or too expensive making them only useful for laboratory applications. Conventional statistical and process control methods cannot cope with high data sampling rates required in machining. The proposed research will realise low-cost sensors with nano scale resolution specific to machining, tools and intelligent control methods for precision machining of large parts by detecting and preventing anomalies during machining to ensure high precision part manufacture and prevent scrap production. [1] Rhodes, C., 2018, Briefing Paper No. 05809, Manufacturing: International comparisons, House of Commons Library.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fecd42059750dd440adfe7a9f7ae6be8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fecd42059750dd440adfe7a9f7ae6be8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Diamond Light Source, Diamond Light Source, TWI Ltd, Brunel University London, Brunel University +3 partnersDiamond Light Source,Diamond Light Source,TWI Ltd,Brunel University London,Brunel University,Brunel University London,The Welding Institute,Diamond Light SourceFunder: UK Research and Innovation Project Code: EP/W015129/1Funder Contribution: 292,639 GBPEnergy storage devices such as batteries and capacitors have become an integral part of our daily life and there is a tremendous zeal to accelerate this technology to be used in electric vehicles and grid storage. It also plays a vital role in mitigating climate change, and enables a low carbon economy by storing and utilising the energy generated from renewable resources. Although lithium ion batteries (LIBs) have dominated the market from 1990's, the shortage of resources and challenges faced in recycling LIBs which contain hazardous and reactive materials will have a detrimental effect on UK and make it dependent on external markets. Therefore, there is an urgent need to develop energy storage devices with environmentally benign and sustainable materials that are easy to recycle which would lead the way to a circular economy. In this regard, Zn ion capacitors (ZICs) offer a sustainable, cost-effective (cost-per-kWh) and safe energy storage system which is also easy to recycle. Building on our previous work on using vitamin based ionic liquid electrolytes in batteries that are environmentally benign, the current project aims at developing Zn ion capacitors (ZICs) having high energy and power densities. This would lead ZICs to charge at a faster rate and store more energy. As an emerging topic, the major challenge in ZICs is the size and charge of Zn ions which are difficult to store at the cathode and leads to lower capacity and limited cyclability. Therefore, the project aims at 1. Developing suitable hybrid cathodes with 2D porous carbon embedded with transition metal oxides that can improve electronic conductivity and diffusion kinetics of Zn ions to obtain high power density, and also inducing storage sites in the cathode to obtain high energy density. 2. Understanding the Zn storage mechanism and impedimental reactions which take place in the capacitors by in situ measurement techniques in collaboration with Diamond Light Source. 3. Modulating the cathode to mitigate the impedimental reactions and improve the ZIC performance. 4. Engaging with project partners (TWI) for scale-up and implementation
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::eda67ac37c9a551a11a56381dc4b2316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::eda67ac37c9a551a11a56381dc4b2316&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2028Partners:NKT Photonics A/S, TWI Ltd, Gooch & Housego (United Kingdom), Coherent Scotland Ltd, Qioptiq Ltd +38 partnersNKT Photonics A/S,TWI Ltd,Gooch & Housego (United Kingdom),Coherent Scotland Ltd,Qioptiq Ltd,Novanta (United Kingdom),MTC,GOOCH & HOUSEGO PLC,NKT Holding (Denmark),TRUMPF (United Kingdom),Centre for Industrial Photonics,Qioptiq Ltd,STFC - LABORATORIES,Laser Quantum Ltd,STFC - Laboratories,Oxford Lasers (United Kingdom),AILU,TRUMPF Ltd,MTC,Centre for Industrial Photonics,Leonardo,OXFORD,Manufacturing Technology Centre (United Kingdom),University of Southampton,Leonardo (United Kingdom),TRUMPF Ltd,Qinetiq (United Kingdom),Leonardo (UK),[no title available],Coherent Scotland Ltd,OXFORD,NKT Photonics A/S,Science and Technology Facilities Council,Laser Quantum Ltd,The Welding Institute,Gooch & Housego (United Kingdom),STFC - Laboratories,Photonics Leadership Group,Photonics Leadership Group,Coherent (United Kingdom),University of Southampton,Gooch & Housego (United Kingdom),Association of Industrial Laser UsersFunder: UK Research and Innovation Project Code: EP/W028786/1Funder Contribution: 6,249,540 GBPStandard multi-kW fibre lasers are now considered 'commodity' routinely produced by multiple manufacturers worldwide and are widely used in the most advanced production lines for cutting, welding, 3D printing and marking a myriad of materials from glass to steel. The ability to precisely control the properties of the output laser beam and to focus it on the workpiece makes high-power fibre lasers (HPFLs) indispensable to transform manufacturing through adaptable digital technologies. As we enter the Digital Manufacturing/Industry 4.0 era, new challenges and opportunities for HPFLs are emerging. Modern product life-cycles have never been shorter, requiring increased manufacturing flexibility. With disruptive technologies like additive manufacturing moving into the mainstream, and traditional subtractive techniques requiring new degrees of freedom and accuracy, we expect to move away from fixed, 'fit-for-all' beams to 'on-the-flight' dynamically reconfigurable 'shaped light' with extensive range of beam shapes, shape frequency and sequencing, as well as 3D focus steering. It is also conceivable that the future factory floor will get 'smarter', undergoing a rapid evolution from dedicated static laser stations to robotic flexible/reconfigurable floorplans, which will require 'smart photon delivery' over long distances to the workpiece. Such a disruptive transition requires a new advanced generation of flexible laser tools suitable for the upcoming 4th industrial revolution. Light has four characteristic properties, namely wavelength, polarization, intensity, and phase. In addition, use of optical fibres enables accurate control and shaping in the spatial domain through a variety of well-guided modes. Invariably, all photonic devices function by manipulating some of these properties. Despite their acclaimed success, so far HPFLs are used rather primitively as single-channel, single colour, mostly unpolarised and unshaped, raw power providers and remain at a relatively early stage (stage I) of their potential for massive scalability and functionality. Moreover, further progress in fibre laser power scaling, beam stability and efficiency is hindered by the onset of deleterious nonlinearities. On the other hand, the other unique attributes, such as extended 'colour palette', extensively controllable polarisation and beam shaping on demand, as well as massive 'parallelism' through accurate phase control remain largely unexplored. Use of these characteristics is inherent and comes natural to fibre technology and can add unprecedented functionality to a next generation of 'smart photon engines' and 'smart photon pipes' in a stage II of development. This PG will address the stage II challenges, confront the science and technology roadblocks, seek innovative solutions, and unleash the full potential of HPFLs as advanced manufacturing tools. Our aim is to revolutionise manufacturing by developing the next generation of reconfigurable, scalable, resilient, power efficient, disruptive 'smart' fibre laser tools for the upcoming Digital Manufacturing era. Research for the next generation of manufacturing tools, like in HiPPo PG, that will drive economic growth should start now to make the UK global leaders in agile laser manufacturing - enabling sustainable, resource efficient high-value manufacturing across sectors from aerospace, to food, to medtech devices and automotive. In this way the UK can repatriate manufacturing, rebalance the economy, create high added-value jobs, and promote the green agenda through efficient manufacturing. It will also enhance our defence sovereign capability, as identified by the Prime Minister in the Integrated Review statement to the House of Commons in November 2020.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d799207fd20ada65a36700dea9c8adf9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d799207fd20ada65a36700dea9c8adf9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Hexcel, Randon Technology Center, National Composites Centre, BAE Systems (Sweden), Randon Technology Center +16 partnersHexcel,Randon Technology Center,National Composites Centre,BAE Systems (Sweden),Randon Technology Center,Mountain Bike Centre of Scotland,BAE Systems (Sweden),Hexcel (United Kingdom),BAE Systems (UK),National Manufacturing Inst Scotland,National Manufacturing Inst Scotland,TWI Ltd,Crack Map LTD,Crack Map LTD,The Welding Institute,Compoestructuras SAS,TU Delft,Compoestructuras SAS,Mountain Bike Centre of Scotland,Hexcel,NCCFunder: UK Research and Innovation Project Code: EP/V009451/2Funder Contribution: 46,099 GBPComposites are truly the materials of the future, due to their excellent properties such as high strength to weight ratio, and their use is rising exponentially, continuing to replace or augment traditional materials in different sectors such as aerospace, automotive, wind turbine blades, civil engineering infrastructure and sporting goods. A good example is the construction of large aircraft such as the Airbus A350 and Boeing 787 which are 53% and 50% composite by weight, respectively. However, while the fibre dominant properties guarantee excellent in-plane load-bearing characteristics, traditional composite materials exhibit weak resistance to out-of-plane loads, making them susceptible to barely visible impact damage (BVID) under impact loads that can happen during manufacturing or in service. BVID can drastically reduce the strength, without any visible warning. Structures that look fine can fail suddenly at loads much lower than expected. This weak impact resistance together with the complexity of the failure mechanisms typical of composite systems led in the past decade to complex and expensive maintenance/inspection procedures. Therefore, a significantly greater safety margin than other materials leads to conservative design in composite structures. Based on these premises, the need is clear for a comprehensive solution that matches the requirements of lightweight structures with the need for high impact resistance and ease of inspection. This project is aimed at the design and development of next generation of high-performance impact resistant composites with visibility of damage and improved compression after impact strength. These exceptional properties are caused with ability to visualise and control failure modes to happen in an optimised way. Energy would be absorbed by gradual and sacrificial damage, strength would be maintained, and there would be visible evidence of damage. This would eliminate the need for very low design strains to cater for BVID, providing a step change in composite performance, leading to greater reliability and safety, together with reduced design and maintenance requirements, and longer service life. This is an exciting opportunity to develop this novel proposed technology with my extensive industrial partners, a potentially transformative prospect for the UK composites research and industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c003d3fea8ac273911600d94342bd9ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c003d3fea8ac273911600d94342bd9ab&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2022Partners:BAE Systems (Sweden), BAE Systems (UK), Hexcel (United Kingdom), National Manufacturing Inst Scotland, National Manufacturing Inst Scotland +18 partnersBAE Systems (Sweden),BAE Systems (UK),Hexcel (United Kingdom),National Manufacturing Inst Scotland,National Manufacturing Inst Scotland,BAE Systems (Sweden),Hexcel,University of Glasgow,TWI Ltd,Randon Technology Center,National Composites Centre,Crack Map LTD,Crack Map LTD,The Welding Institute,Mountain Bike Centre of Scotland,University of Glasgow,Randon Technology Center,Compoestructuras SAS,BAE Systems (United Kingdom),Compoestructuras SAS,Mountain Bike Centre of Scotland,Hexcel,NCCFunder: UK Research and Innovation Project Code: EP/V009451/1Funder Contribution: 241,209 GBPComposites are truly the materials of the future, due to their excellent properties such as high strength to weight ratio, and their use is rising exponentially, continuing to replace or augment traditional materials in different sectors such as aerospace, automotive, wind turbine blades, civil engineering infrastructure and sporting goods. A good example is the construction of large aircraft such as the Airbus A350 and Boeing 787 which are 53% and 50% composite by weight, respectively. However, while the fibre dominant properties guarantee excellent in-plane load-bearing characteristics, traditional composite materials exhibit weak resistance to out-of-plane loads, making them susceptible to barely visible impact damage (BVID) under impact loads that can happen during manufacturing or in service. BVID can drastically reduce the strength, without any visible warning. Structures that look fine can fail suddenly at loads much lower than expected. This weak impact resistance together with the complexity of the failure mechanisms typical of composite systems led in the past decade to complex and expensive maintenance/inspection procedures. Therefore, a significantly greater safety margin than other materials leads to conservative design in composite structures. Based on these premises, the need is clear for a comprehensive solution that matches the requirements of lightweight structures with the need for high impact resistance and ease of inspection. This project is aimed at the design and development of next generation of high-performance impact resistant composites with visibility of damage and improved compression after impact strength. These exceptional properties are caused with ability to visualise and control failure modes to happen in an optimised way. Energy would be absorbed by gradual and sacrificial damage, strength would be maintained, and there would be visible evidence of damage. This would eliminate the need for very low design strains to cater for BVID, providing a step change in composite performance, leading to greater reliability and safety, together with reduced design and maintenance requirements, and longer service life. This is an exciting opportunity to develop this novel proposed technology with my extensive industrial partners, a potentially transformative prospect for the UK composites research and industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d7d8c888bf1986ccd5e3f57a3624f4f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d7d8c888bf1986ccd5e3f57a3624f4f3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right