
GEM IMAGIN
GEM IMAGIN
8 Projects, page 1 of 2
- ULPGC,VA,MEDTRONIC,UHS,Imperial,FUNDACION CANARIA DE INVESTIGACION SANITARIA,GEM IMAGIN,UPM,ARMINES,FUNDACION CANARIA DE INVESTIGACION SANITARIAFunder: European Commission Project Code: 618080
more_vert Open Access Mandate for Publications assignment_turned_in Project2013 - 2018Partners:Sapienza University of Rome, SensL (Ireland), BENCAR, UNIVERSITE DE BRETAGNE OCCIDENTALE, KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN +5 partnersSapienza University of Rome,SensL (Ireland),BENCAR,UNIVERSITE DE BRETAGNE OCCIDENTALE,KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN,Uppsala University,CSIC,GEM IMAGIN,NORAS,KIFunder: European Commission Project Code: 603002more_vert assignment_turned_in Project2013 - 2015Partners:GEM IMAGIN, IBV, THE UK HEALTH & ENVIRONMENT RESEARCH INSTITUTE, STATICE ETUDES ET DEVELOPPEMENT STATICE R&D ST, NKI ALV +2 partnersGEM IMAGIN,IBV,THE UK HEALTH & ENVIRONMENT RESEARCH INSTITUTE,STATICE ETUDES ET DEVELOPPEMENT STATICE R&D ST,NKI ALV,VA,CSICFunder: European Commission Project Code: 606017more_vert Open Access Mandate for Publications assignment_turned_in Project2018 - 2023Partners:University of Sussex, Academy of Athens, UH, URJC, NWO-I +161 partnersUniversity of Sussex,Academy of Athens,UH,URJC,NWO-I,JSI,UNIPV,BIOMEDICAL RESEARCH FOUNDATION, ACADEMY OF ATHENS,UCLM,UNIL,UGOE,ISS,CHUV,HCPB,CNR,INFN,TAMPERE UNIVERSITY,Cineca,OFAI,TUM,University Federico II of Naples,University of Surrey,EPFZ,EPFL,Weizmann Institute of Science,KTH,FUNDACAO CHAMPALIMAU,Graz University of Technology,THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN,FHG,EMBL,Sapienza University of Rome,STICHTING RADBOUD UNIVERSITEIT,LENS,TUD,Heidelberg University,Goethe University Frankfurt,ROBOTNIK,SICHH SWISS INTEGRATIVE CENTER FOR HUMAN HEALTH SA,BUW,BSC,University of Edinburgh,UPF,FZJ,MUI,TUC,NMBU,Fortiss,AALTO,UM,FZI,TAU,Centre Hospitalier Régional et Universitaire de Lille,UPM,University of Sheffield,MPG,UNITO,Imperial,IDIBAPS,SSSUP,DTU,ARC,MUHEC,Institute of Science and Technology Austria,UNIVERSITE LYON 1 CLAUDE BERNARD,UCL,UvA,AUTONOMYO SARL,Polytechnic University of Milan,Ghent University, Gent, Belgium,University of Aberdeen,University Medical Center Freiburg,UiO,VU,Bauhaus University, Weimar,CEA,UGA,UZH,UMG,KOKI,University of Trier,UB,CHUG,University of Manchester,BIT&BRAIN TECHNOLOGIES,Alpine Intuition,Oslo University Hospital,INSERM,LUMC,UH,CONVELOP - COOPERATIVE KNOWLEDGE DESIGN GMBH,KCL,LINNEUNIVERSITETET,GEM IMAGIN,ICM,SU,UKA,UAntwerpen,POLITO,Bloomfield Science Museum Jerusalem,HITS,KNAW,LABVANTAGE BIOMAX GMBH,CNRS,University of Leeds,ERASMUS MC,KIT,Bielefeld University,UGR,INGLOBE TECHNOLOGIES SRL,SNS,UAM,Institut Pasteur,AUEB-RC,HU,ULiège,HHU,AI2LIFE SRL,IIT,UH,DZG,UWE,SIB,UNIVERSITY OF APPLIED SCIENCES,INRIA,Helmholtz Association of German Research Centres,UB,TAMPERE UNIVERSITY OF TECHNOLOGY,Charité - University Medicine Berlin,UNIMI,UNIGE,University of Glasgow,TU Darmstadt,Sorbonne University,IDIBAPS-CERCA,EBRAINS,EBRI,DMU,INDOC RESEARCH EUROPE GGMBH,PRES,UoA,Uppsala University,KI,DEMOCRACY X,UOXF,UBx,SISSA,Biomax Informatics (Germany),MTA,UKE,IBEC,UNIBAS,ENS,Cardiff University,HUJI,UMINHO,KUL,APHM,DZNE,Universitäts-Augenklinik Bonn,CNRS,RWTH,Ospedale Niguarda Ca' Granda,University of Debrecen,AMU,INSBFunder: European Commission Project Code: 800858Overall Budget: 50,075,000 EURFunder Contribution: 24,999,900 EURFive leading European supercomputing centres are committed to develop, within their respective national programs and service portfolios, a set of services that will be federated across a consortium. The work will be undertaken by the following supercomputing centres, which form the High Performance Analytics and Computing (HPAC) Platform of the Human Brain Project (HBP): ▪ Barcelona Supercomputing Centre (BSC) in Spain, ▪ The Italian supercomputing centre CINECA, ▪ The Swiss National Supercomputing Centre CSCS, ▪ The Jülich Supercomputing Centre in Germany, and ▪ Commissariat à l'énergie atomique et aux énergies alternatives (CEA), France (joining in April 2018). The new consortium will be called Fenix and it aims at providing scalable compute and data services in a federated manner. The neuroscience community is of particular interest in this context and the HBP represents a prioritised driver for the Fenix infrastructure design and implementation. The Interactive Computing E-Infrastructure for the HBP (ICEI) project will realise key elements of this Fenix infrastructure that are targeted to meet the needs of the neuroscience community. The participating sites plan for cloud-like services that are compatible with the work cultures of scientific computing and data science. Specifically, this entails developing interactive supercomputing capabilities on the available extreme computing and data systems. Key features of the ICEI infrastructure are: ▪ Scalable compute resources; ▪ A federated data infrastructure; and ▪ Interactive Compute Services providing access to the federated data infrastructure as well as elastic access to the scalable compute resources. The ICEI e-infrastructure will be realised through a coordinated procurement of equipment and R&D services. Furthermore, significant additional parts of the infrastructure and R&D services will be realised within the ICEI project through in-kind contributions from the participating supercomputing centres.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2028Partners:GEM IMAGIN, FBK, KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN, UB, CSIC +1 partnersGEM IMAGIN,FBK,KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN,UB,CSIC,JSIFunder: European Commission Project Code: 101099896Overall Budget: 3,374,040 EURFunder Contribution: 3,374,040 EUROver 2.7 million people in the EU were diagnosed with cancer in 2020, while 1.3 million people lost their lives to it. Cancer cases are predicted to increase by 24% by 2035, making it the leading cause of death in the EU. The current leading specific molecular imaging diagnostic technique sensitive to cancer is based on Positron Emission Tomography (PET). Due to the high implementation cost of PET, this high-sensitivity diagnostics, is only available to less than 0,5 % of the medical centers in the world. The critical component of the overall cost is the cost of PET scanners. Our project proposes a radical vision to translate European breakthrough technological advances in Time-of-Flight PET detection to a revolutionary, fully modular, cost-accessible flexible family of devices for applications from the standard PET center to the surgery, epilepsy clinics, intensive care units and even emergency rooms and in mobile units installed in vans. The proposed PetVision project aims to develop a simple pilot demonstrator, a modular panel PET device with a coincidence timing resolution of about 75 ps FWHM, close to the intrinsic timing limit of currently available PET scintillators. This resolution is several times better than the current gold standard of 214 ps FWHM achieved with the current clinical state-of-the-art device (Siemens Biograph Vision). With such excellent timing, the panel detectors can cover only a limited solid angle to reach the same sensitivity or improve the sensitivity in the case of a total-body imager. For the realization of the device, a package of breakthrough innovations in detector design, photo-sensor, and front-end electronics are planned. We expect that the proposed device will dramatically impact human health.
more_vert
chevron_left - 1
- 2
chevron_right