Powered by OpenAIRE graph
Found an issue? Give us feedback

Mott Macdonald (United Kingdom)

Mott Macdonald (United Kingdom)

36 Projects, page 1 of 8
  • Funder: UK Research and Innovation Project Code: EP/F034520/1
    Funder Contribution: 3,452,950 GBP

    Energy supply for the UK, and for the World as a whole, will experience major changes during the next 20 years, as states seek secure energy supplies, combined with low costs, and sustainable environmental impacts. Most of world energy currently derives from combustion of fossil fuel. The UK is no exception.In the UK, fossil fuel (oil) dominates transport use, and this is unlikely to change in the near future. Electricity and heat generation is dominated by gas (41%) and coal (34%), with 20% from nuclear, only 3% from renewables, and 2% imported electricity. This gas and coal will from now onwards largely be imported, paying costs to suppliers outside the UK. This also means security of supply is not guaranteed. Can improvements be made to the use of these energy sources?A key environmental problem is that fossil fuel combustion releases CO2 to the atmosphere. This is now, beyond reasonable doubt, linked to global warming and climate change. Atmospheric CO2 also dissolves in ocean water, forcing an increased acidity greater than any time in the past 20 Million years. Even those who still do not believe in climate change cannot escape the inevitability of ocean acidification / with as yet un-predicted consequences. For this reason alone, atmospheric CO2 must be reduced.To enable continued use of fossil fuels it is an urgent requirement to de-carbonise their combustion. The Stern Review of Climate Change Economics in 2006 clearly re-stated that significant progress must be made during the ten years until 2017.This research proposal addresses the fossil fuel issues in two ways: Firstly, to create a UK Centre of university expertise in the capture of CO2 from power plants. Current industrial systems rely on chemical absorption by solvents, but require a very high energy input, which reduces the environmental gain. The Centre will focus on new technologies of CO2 separation by adsorption onto nanoporous materials, by filtration of CO2 from power plant flue gases by semi-permeable membranes, and by membrane and adsorption separation processes for the production of oxygen from air, to enable oxy-fuel combustion and efficient CO2 separation.Secondly, we acknowledge that there is, and will be, a need to remove existing CO2 emissions from the atmosphere. The reductions proposed from power plant emissions do not reduce existing CO2, but rather just make the increase slower. To control the earth atmosphere and produce a sustainable climate requires extraction of CO2 already emitted. This is routinely achieved, at low cost, by vegetation. We will create an entirely new centre of university expertise which will focus on using bio-mass from agriculture, forestry and waste. This can firstly make bio-fuel to replace fossil sources, and the residues can be pyrolised to form charcoal. Such charcoal has been used in traditional cultures to enhance soil fertility, and locks up carbon for thousands of years. Improvements in land use in the EU, the USA, and developing world can achieve this, by an integration of engineering, soil science, and social benefit to cultivators.Edinburgh (with the British Geological Survey and Heriot-Watt) already hosts the UK's largest academic centre investigating geological burial of captured CO2. There are existing multi-skilled networks at Edinburgh linking land use, agriculture, social, legal and economic analysis, chemical engineering and petroleum geoscience. Creation of the Carbon Capture Centre will be an ideal complementary activity, and the range of expertise, from atmospheric capture, to power-plant capture to cultivation and geological burial will be unique.Outputs from the Centre can help the UK to combust coal and gas with environmentally clean methods, to enhance energy security by diversifying away from fossil fuel sources, and to commence the direct clean-up of CO2 from the atmosphere in an energy and financially efficient, sustainable way.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R034575/1
    Funder Contribution: 4,872,900 GBP

    Infrastructure is fundamental to our economy and society, e.g. being one of the 10 pillars of the recently launched UK Industrial Strategy. Long linear (geotechnical) assets (LLAs) are a major component of this infrastructure and fundamental to the delivery of critical services over long distances (e.g. road & railway slopes, pipeline bedding, flood protection structures). Central government infrastructure investment will rise by almost 60% to £22 billion p.a. by 2022 (ONS). This will support both the development of new infrastructure, and the repair of existing infrastructure. At present, there are 10,200 km of flood defences in Great Britain; 80,000 km of highways; 15,800 km of railway). Failure of these assets is common-place (e.g. in 2015 there were 143 earthworks failures on Network Rail - >2 per week), the resulting cost of failure is high (e.g. for Network Rail, emergency repairs cost 10 times planned works, which cost 10 times maintenance), and vulnerability to these failures is significant (748,000 properties with at least a 1-in-100 annual chance of flooding; derailment from slope failure is the greatest infrastructure-related risk faced by our railways). However, the exact reasons for - and timing of - failure is, at present, poorly understood. This leads to unanticipated failures that cause severe disruption and damage to reputation. Current approaches to design and asset management perpetuate this situation as they are based on past experience, which cannot be extrapolated to future performance: the infrastructure is older, ever more intensively used and subject to increasingly extreme weather patterns. Together, these factors significantly increase the likelihood of failures in the future causing reduced performance and poorer service. Climate change has been identified as one of the factors driving this change. There is an exciting opportunity to bring together new advances in research and technology with design and asset management practices from different LLAs to reduce the risks posed to infrastructure systems by deterioration and future change. Current techniques can estimate future rates of deterioration that might lead to failure in transport infrastructure slopes, but are difficult to scale up, do not capture all drivers of deterioration relevant to all LLAs, are poor at dealing with uncertainty and heterogeneity, and lack rigorous validation against representative field data. Different asset owners have access to vast quantities of failure and condition data from their networks (recently enabled by technological advances in data capture and storage) but use different approaches to address failure based on historical data. ACHILLES proposes a research programme that brings these approaches together, coupled with statistical advances to enable rigorous use of network data, and economics to assess the value of design, monitoring and mitigation options. Our long-term vision is for the UK's infrastructure to deliver consistent, affordable and safe services, underpinned by intelligent design, management and maintenance. ACHILLES proposes a Programme to address this challenge by combining laboratory/field experimentation, numerical modelling and simulation, statistical data and cost benefit analysis, and activities to enable its outcomes to be adopted by LLA owners/operators: Deeper understanding of material and asset deterioration and how to model and predict New design tools to account for deterioration; and assessment tools to characterise Strategies to mitigate deterioration from material to asset scale Decision-making framework to prioritise spending on design, monitoring and/or interventions that accounts for heterogeneity and uncertainty, and informs appropriate business cases Better understanding of the importance of characterising heterogeneity and uncertainty for infrastructure decision making processes Knowledge and tools to incorporate data analytics into asset assessment and monitoring

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S02302X/1
    Funder Contribution: 6,761,080 GBP

    Our infrastructure is central to the economic prosperity of the nation and to the flourishing of a stable, yet dynamic, civil society. Its interconnected strands - the energy, transportation, water, sanitation and communication networks that provide access to services and markets and which underpin the securities of daily life - must be not only affordable and reliable but also resilient against threats such as technological uncertainty, environmental causes, economic and political change, and demographic and societal change unfolding in an increasingly uncertain world. FIBE2 CDT will lead a paradigm shift in the approach to infrastructure resilience through the creation of an inspirational doctoral training programme for talented cohorts from diverse academic and social backgrounds to conduct world-class, cutting-edge and industry-relevant research. Our goal is to develop the infrastructure professionals of the future, equipped with a versatile and cross-disciplinary skillset to meet the most complex emerging challenges, harness the full value of existing infrastructure and contribute effectively to better infrastructure decision-making in the UK. The programme's technical focus will exploit high-level interconnected research themes in advanced infrastructure materials, rethinking design & construction, digitised civil engineering, whole-life performance, built environment and global challenges, along high-level crosscutting themes in emerging technologies, performance to data to knowledge, research across scales, and risk and uncertainty. In FIBE2 CDT we offer a radical rethink to deliver innovation for the cross-disciplinary and interconnected challenges in resilient infrastructure. Our 1+3 MRes/PhD programme proposes a new approach to infrastructure research where students from different disciplines proactively forge new training and research collaborations. FIBE2 is inspired by the paradigm of a 3D 'T' shaped engineer embodying a combination of depth and breadth of knowledge, augmented by our new thinking around cross-disciplinary training and research. High level Infrastructure Engineering concepts will be interlinked and related to the detailed technical fundamentals that underpin them in bespoke core and elective modules. Cohort-based learning will bridge across the wider environmental, societal, economic, business and policy issues within the even broader context of ethics, responsible innovation and ED&I. These depth and breadth elements are interwoven and brought together through problem-based challenges using large-scale cross-disciplinary infrastructure projects. Individual student plans will be carefully crafted to harmonise the specificity of PhD research with the need for expansive understanding of threats and opportunities. The development of Resilient FIBE2 CDT students with strong personal, technical and professional resilience attributes is integral to the FIBE2 approach to training and research. The FIBE2 PhD projects will build upon Cambridge's internationally leading research, investment and funding in the diverse areas related to infrastructure and resilience. Our major strategic initiatives include >£60M funding from EPSRC and industry. Our engagements in UKCRIC, CDBB, Alan Turing and Henry Royce Institutes and our world class graduate training programmes provide an inspirational environment for the proposed CDT. The FIBE2 vision has been co-created with our 27 strategic industry partners from across all infrastructure sectors and nine international academic centre partners across the world, who have pledged over £12M. We will work together to deliver the FIBE2 CDT objectives and add new dimensions to our students' experience. The lasting impact of FIBE2 will be embodied in our students acting as role models to inspire future generations of infrastructure engineers and rising to lead the profession through all the technological and societal challenges facing UK infrastructure.

    more_vert
  • Funder: UK Research and Innovation Project Code: MR/W013169/1
    Funder Contribution: 1,529,410 GBP

    Permeable (fast draining) infrastructure will reduce the impact from climate change and urbanisation related flooding, which has a projected annual global cost of £500bn by 2030. Flooding is expected to cost the UK economy £27bn annually by 2080, without investment in flood resilient infrastructure. Along with the 2020 government plan for green infrastructure development, it is timely to invest in flood resilient permeable infrastructure. An extreme example of flood-affected infrastructure are airport pavements, impacted by stormwater and ice/snow build-up causing aircraft skidding. Skidding accounts for nearly half of all post 1990 major global commercial air crashes. In 2017 a Heathrow snow event grounded over 50,000 passengers and required a hurried £10m purchase of de-icing equipment. The current methods for preventing ice/snow build-up damage the environment, aircraft components and runway surfaces, increasing infrastructure maintenance costs. Airport operators, seeking to address these concerns, have expressed a strong desire to use permeable concrete technology to keep infrastructure clear. Permeable concrete pavements are one of the most promising mitigation strategies to prevent surface flooding, they rapidly drain stormwater through otherwise impermeable infrastructure. Conventional permeable pavements are, however, prone to clogging, due to debris trapped within the pore network, blocking the pavement and reducing its drainage capacity. The frequent required maintenance degrades performance and service life and is difficult to perform in an active airport. Most importantly, conventional permeable pavements have insufficient strength, making them unsuited for airports. There is an urgent need for a new system that can reliably keep airports clear of standing water and ice/snow. I recently developed next generation clogging resistant permeable pavement (CRP) of uniform pore structure to address infrastructure flooding. It has improved strength (twice as strong >50 MPa) and higher permeability (ten times more) than conventional systems of equal porosity, yet does not clog despite exposure to stormwater sediments. This Fellowship will significantly reengineer my novel pavement to develop the first permeable pavement, with sufficient strength and resilience, for the extreme airport case, while also applicable to less extreme highway, railway and novel green wall scenarios. These step-change advancements will be achieved by steel reinforcement, used in permeable pavements for the first time. The structural performance, material integrity, skid resistance, long-term durability and hydrological (drainage) properties will be assessed for airport suitability and improved if required. This project will be the first to investigate conductive (direct contact) and convective (transmission through air) heat transfer through permeable pavements used in high-value heavy load-bearing infrastructure. I will use heat extracted from the ground (ground source energy system, GSES) in these new pavements to melt the deposited ice/snow and drain away the excess water. Conventional pavements can be heated by conduction only, whereas CRP can be heated through both conduction and convection (via the pores) as the novel pore structure also allows for natural convection. This Fellowship will, through extensive laboratory experimentation, computer modelling and the permanent large-scale deployment at Inverness Airport (spanning across multiple technology readiness levels (1-7), a measure of technology maturity), develop climate change resilient infrastructure materials that can be used to deliver a sustainable built environment resistant to flooding, ice/snow build-up and the harmful heat island effect. To achieve this ambitious goal, I will address significant structural, material, thermal and hydrological challenges with wide reaching economic, environmental and societal benefits to the construction and transportation sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F061811/1
    Funder Contribution: 303,638 GBP

    Reliability is essential to the success of renewable energy systems. The estimated life of wind turbines is about 20 years, this is in comparison to 40 years for a conventional steam turbine generator unit. However the failure rate of wind turbines is about 3 times higher than that of conventional generators. The key feature that differentiates a renewable energy source, from conventional generation, is the inherent fluctuation of the source, giving rise to poor reliability due to fatigue cycling and consequently high life-cycle cost. This proposal aims to build a consortium of UK and Chinese researchers to investigate the scientific causes of poor reliability of components and develop solutions to improve it. Stress analysis and impact evaluation will be performed for stresses in thermal, mechanical, or coupled thermo-mechanical domains, taking into account the practical operating conditions. Accelerated aging test will be carried out to identify critical areas where improvement can be made cost-effectively. The research aims to develop new design concepts and new techniques that can be integrated in future renewable energy conversion systems and networks for reliability. Potential new techniques include active thermal management, integrated power smoothing, and mechanical stress releasing methods. These will be compared with alternative technologies that have been pursued by the consortium members and other researchers, such as gearless direct-drive systems, modular and fault tolerant designs and condition monitoring. The research will initially focus on wind turbines but will be extended to other forms of renewable electrical power generation including wave and tidal stream systems.Five UK and four Chinese universities as well as Chinese Academy of Sciences are initially included in the consortium which is strengthened by seven industrial partners from the two countries, in order to establish the expertise and facilities needed to address the multidisciplinary problem. The programme promotes essential and close interaction between the themes and the individual tasks. The interactions take a range of forms, from providing testing materials and facilities to the development of stress and reliability models for techniques for performance improvement. Chinese organisations will commit 9 PhD studentships to compliment the 7 themed PhD studentships in UK universities. The dissemination will involve academic publications, a dedicated website, consortium meetings, international seminars and events.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.