Powered by OpenAIRE graph
Found an issue? Give us feedback

Henkel Electronic Materials (Belgium) NV

Country: Belgium

Henkel Electronic Materials (Belgium) NV

6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 692482
    Overall Budget: 64,564,300 EURFunder Contribution: 16,677,300 EUR

    The goal of EnSO is to develop and consolidate a unique European ecosystem in the field of autonomous micro energy sources (AMES) supporting Electronic European industry to develop innovative products, in particular in IoT markets. In summary, EnSO multi-KET objectives are: • Objective 1: demonstrate the competitiveness of EnSO energy solutions of the targeted Smart Society, Smart Health, and Smart Energy key applications • Objective 2: disseminate EnSO energy solutions to foster the take-up of emerging markets. • Objective 3: develop high reliability assembly technologies of shapeable micro batteries, energy harvester and power management building blocks • Objective 4: Develop and demonstrate high density, low profile, shapeable, long life time, rechargeable micro battery product family. • Objective 5: develop customizable smart recharge and energy harvesting enabling technologies for Autonomous Micro Energy Source “AMES”. • Objective 6: demonstrate EnSO Pilot Line capability and investigate and assess the upscale of AMES manufacturing for competitive very high volume production. EnSO will bring to market innovative energy solutions inducing definitive differentiation to the electronic smart systems. Generic building block technologies will be customizable. EnSO manufacturing challenges will develop high throughput processes. The ENSo ecosystem will involve all the value chain from key materials and tools to many demonstrators in different fields of application. EnSO work scope addresses the market replication, demonstration and technological introduction activities of ECSEL Innovation Action work program. EnSO relates to several of the Strategic Thrusts of ECSEL MASP. EnSO innovations in terms of advanced materials, advanced equipment and multi-physics co-design of heterogeneous smart systems will contribute to the Semiconductor Process, Equipment and Materials thrust. The AMES will be a key enabling technology of Smart Energy key applications.

    more_vert
  • Funder: European Commission Project Code: 314362
    more_vert
  • Funder: European Commission Project Code: 247710
    more_vert
  • Funder: European Commission Project Code: 720897
    Overall Budget: 8,101,380 EURFunder Contribution: 6,820,290 EUR

    The project targets the incorporation of advanced functional materials to deliver customised conductive inks and flexible adhesives compatible with high volume manufacturing platforms. Specifically the development of these enabling materials will support high speed roll to roll integration of hybrid and large area electronics to address internet of things opportunities The consortium will integrate materials development with end application requirements in terms of technical performance (thermal/electrical conductivity, processing conditions, materials integrity and adhesion) and unit cost of production to facilitate market adoption. The project will utilise and build on existing CPI pilot facilities (R2R print line) to demonstrate technology integration, manufacturability and produce components for end user evaluation to enable the direct comparison of production techniques. The project delivers a supply chain to support future commercialisation: incorporating materials suppliers of inks and adhesives, supporting RTO in Formulation and nano-particle production, established high fidelity print equipment manufacturers, electronic device manufacturers, established pilot line facilities and potential end users from the apparel, packaging and healthcare sector – relating to the internet of things.

    more_vert
  • Funder: European Commission Project Code: 857793
    Overall Budget: 15,087,600 EURFunder Contribution: 12,870,500 EUR

    The HighLite project aims to substantially improve the competitiveness of the EU PV manufacturing industry by developing knowledge-based manufacturing solutions for high-performance low-cost modules with excellent environnment profiles (low CO2 footprint, enhanced durability, improved recyclability). To achieve this, the HighLite project focuses on thin (down to 100 µm) high-efficiency crystalline silicon solar cells with passivating contacts and capitalizes on the learnings from previous large funded projects. In HighLite, a unique consortium of experienced industrial actors and leading institutes will work collectively to develop, optimize, and bring to high technology readiness levels (TRL 6-7) innovative solutions at both cell and module levels. In practice, HighLite will demonstrate high-efficiency ¼ size (or smaller) cut solar cells (silicon heterojunction cells with efficiency η ≥ 23.3%, interdigated back-contact cells with η ≥ 24.3%; only 0.2% less than full size cells) in pilot-line manufacturing. Industrial tools will be developed in the project for assembling these cut-cells into high-efficiency modules tailored for various distributed generation (DG) applications. More specifically, the following developments will take place: (1) building-applied PV modules with η ≥ 22% and a carbon footprint ≤ 250 kg-eq.CO2/kWp, (2) building-integrated PV modules with η ≥ 21% and improved shading tolerance, and (3) 3D-curved vehicle-integrated PV modules with η ≥ 20% and a weight ≤ 5 kg/m2. Finally, HighLite aims to show improved cost and performance (both through indoor testing and outdoor demonstrators) against state-of-the-art commercially available modules. Altogether, it is expected that the solutions developed in HighLite will: (1) create more demand in Europe and worldwide for such DG products, (2) significantly improve the competitiveness of industrial actors that are part of the consortium, and (3) trigger significant investment in the EU PV industry.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.