
Welsh Centre for Printing and Coating
Welsh Centre for Printing and Coating
4 Projects, page 1 of 1
assignment_turned_in Project2013 - 2018Partners:Novalia, Momentive Performance Materials Inc, Cambridge Integrated Knowledge Centre, Victrex (United Kingdom), Teratech Components (United Kingdom) +67 partnersNovalia,Momentive Performance Materials Inc,Cambridge Integrated Knowledge Centre,Victrex (United Kingdom),Teratech Components (United Kingdom),Polyfect Solutions Ltd,RMRL,JM,Momentive Performance Materials Inc,Tonejet Limited,WCPC,Nokia Research Centre (UK),Plastic Logic (United Kingdom),Luigi Bandera Mechanical Engineering SpA,Agilent Technologies (United Kingdom),Luigi Bandera Mechanical Engineering SpA,Cobham Technical Services,Cobham Technical Services,Emdot Limited,Johnson Matthey (United Kingdom),Hardy Advanced Composites,TONEJET LIMITED,BAE Systems (Sweden),University of Cambridge,BAE Systems (UK),Victrex plc,Victrex plc,Polyfect Solutions Ltd,JM,Cambridge Enterprise,Cobham (United Kingdom),Printed Electronics Ltd,Polyfect Solutions Ltd,UCL,Hardy Advanced Composites,Printed Electronics (United Kingdom),DuPont (UK) Ltd,RMRL,JOHNSON MATTHEY PLC,Emdot Limited,Aixtron Ltd,Teratech Components Ltd,DuPont (UK) Ltd,Printed Electronics Ltd,Cambridge Enterprise,QMUL,Tonejet Limited,Plastic Logic (United Kingdom),Dyson Appliances Ltd,Agilent Technologies (United Kingdom),DuPont (UK) Ltd,Novalia,Aixtron (United Kingdom),BAE Systems (Sweden),Nokia Research Centre,Teratech Components (United Kingdom),UNIVERSITY OF CAMBRIDGE,Cambridge Integrated Knowledge Centre,Chemring Technology Solutions (United Kingdom),Agilent Technologies (United Kingdom),Nokia Research Centre,BAE Systems (United Kingdom),Aixtron Ltd,University of Cambridge,Emdot Limited,DuPont (United Kingdom),Dyson Appliances Ltd,Dyson Limited,Welsh Centre for Printing and Coating,Hardy Advanced Composites,Cambridge Enterprise,Technology Partnership (United Kingdom)Funder: UK Research and Innovation Project Code: EP/K01711X/1Funder Contribution: 2,957,290 GBPGraphene has many record properties. It is transparent like (or better than) plastic, but conducts heat and electricity better than any metal, it is an elastic thin film, behaves as an impermeable membrane, and it is chemically inert and stable. Thus it is ideal for the production of next generation transparent conductors. Thin and flexible graphene-based electronic components may be obtained and modularly integrated, and thin portable devices may be assembled and distributed. Graphene can withstand dramatic mechanical deformation, for instance it can be folded without breaking. Foldable devices can be imagined, together with a wealth of new form factors, with innovative concepts of integration and distribution. At present, the realisation of an electronic device (such as, e.g., a mobile phone) requires the assembly of a variety of components obtained by many technologies. Graphene, by including different properties within the same material, can offer the opportunity to build a comprehensive technological platform for the realisation of almost any device component, including transistors, batteries, optoelectronic components, photovoltaic cells, (photo)detectors, ultrafast lasers, bio- and physico-chemical sensors, etc. Such change in the paradigm of device manufacturing would revolutionise the global industry. UK will have the chance to re-acquire a prominent position within the global Information and Communication Technology industry, by exploiting the synergy of excellent researchers and manufacturers. We propose a programme of innovative and adventurous research, with an emphasis on applications, uniquely placed to translate this vision into reality. Our research consortium, led by engineers, brings together a diverse team with world-leading expertise in graphene, carbon electronics, antennas, wearable communications, batteries and supercapacitors. We have strong alignment with industry needs and engage as project partners potential users. We will complement and wish to engage with other components of the graphene global research and technology hub, and other relevant initiatives. The present and future links will allow UK to significantly leverage any investment in our consortium and will benefit UK plc. The programme consists of related activities built around the central challenge of flexible and energy efficient (opto)electronics, for which graphene is a unique enabling platform. This will be achieved through four main themes. T1: growth, transfer and printing; T2: energy; T3: connectivity; T4: detectors. The final aim is to develop "graphene-augmented" smart integrated devices on flexible/transparent substrates, with the necessary energy storage capability to work autonomously and wireless connected. Our vision is to take graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent (opto)electronics, with a manifold return for UK, in innovation and exploitation. Graphene has benefits both in terms of cost-advantage, and uniqueness of attributes and performance. It will enable cheap, energy autonomous and disposable devices and communication systems, integrated in transparent and flexible surfaces, with application to smart homes, industrial processes, environmental monitoring, personal healthcare and more. This will lead to ultimate device wearability, new user interfaces and novel interaction paradigms, with new opportunities in communication, gaming, media, social networking, sport and wellness. By enabling flexible (opto)electronics, graphene will allow the exploitation of the existing knowledge base and infrastructure of companies working on organic electronics (organic LEDs, conductive polymers, printable electronics), and a unique synergistic framework for collecting and underpinning many distributed technical competences.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9a954b90bc429fc9f47c5d6094c1a90f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9a954b90bc429fc9f47c5d6094c1a90f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:UCL, Hardy Advanced Composites, Printed Electronics (United Kingdom), Aixtron Ltd, CamLase Ltd +59 partnersUCL,Hardy Advanced Composites,Printed Electronics (United Kingdom),Aixtron Ltd,CamLase Ltd,DuPont (UK) Ltd,Printed Electronics Ltd,Novalia,Momentive Performance Materials Inc,WCPC,Cambridge Integrated Knowledge Centre,Victrex (United Kingdom),NANEUM,University of Cambridge,NANEUM,Victrex plc,Tonejet Limited,Emdot Limited,Johnson Matthey (United Kingdom),JM,Cambridge Enterprise,Polyfect Solutions Ltd,Aixtron (United Kingdom),Nokia Research Centre,Agilent Technologies (United Kingdom),JM,Nokia Research Centre (UK),Luigi Bandera Mechanical Engineering SpA,Agilent Technologies (United Kingdom),Cambridge Enterprise,Plastic Logic (United Kingdom),Agilent Technologies (United Kingdom),Novalia,Polyfect Solutions Ltd,Hardy Advanced Composites,TONEJET LIMITED,CamLase Ltd,JOHNSON MATTHEY PLC,Tonejet Limited,Emdot Limited,Momentive Performance Materials Inc,Plastic Logic (United Kingdom),Luigi Bandera Mechanical Engineering SpA,Victrex plc,Polyfect Solutions Ltd,Printed Electronics Ltd,DuPont (UK) Ltd,Technology Partnership (United Kingdom),CamLase Ltd,University of Cambridge,Emdot Limited,DuPont (United Kingdom),Dyson Appliances Ltd,Dyson Limited,Dyson Appliances Ltd,Aixtron Ltd,DuPont (UK) Ltd,NanoBeam Limited,UNIVERSITY OF CAMBRIDGE,Cambridge Integrated Knowledge Centre,Nokia Research Centre,Welsh Centre for Printing and Coating,Hardy Advanced Composites,Cambridge EnterpriseFunder: UK Research and Innovation Project Code: EP/K017144/1Funder Contribution: 6,883,330 GBPGraphene has many record properties. It is transparent like (or better than) plastic, but conducts heat and electricity better than any metal, it is an elastic thin film, behaves as an impermeable membrane, and it is chemically inert and stable. Thus it is ideal for the production of next generation transparent conductors. Thin and flexible graphene-based electronic components may be obtained and modularly integrated, and thin portable devices may be assembled and distributed. Graphene can withstand dramatic mechanical deformation, for instance it can be folded without breaking. Foldable devices can be imagined, together with a wealth of new form factors, with innovative concepts of integration and distribution. At present, the realisation of an electronic device (such as, e.g., a mobile phone) requires the assembly of a variety of components obtained by many technologies. Graphene, by including different properties within the same material, can offer the opportunity to build a comprehensive technological platform for the realisation of almost any device component, including transistors, batteries, optoelectronic components, photovoltaic cells, (photo)detectors, ultrafast lasers, bio- and physicochemical sensors, etc. Such a change in the paradigm of device manufacturing would revolutionise the global industry. UK will have the chance to re-acquire a prominent position within the global Information and Communication Technology industry, by exploiting the synergy of excellent researchers and manufacturers. Our vision is to take graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent (opto)electronics, with a manifold return for UK, in innovation and exploitation. Graphene has benefits both in terms of cost-advantage, and uniqueness of attributes and performance. It will enable cheap, energy autonomous and disposable devices and communication systems, integrated in transparent and flexible surfaces, with application to smart homes, industrial processes, environmental monitoring, personal healthcare and more. This will lead to ultimate device wearability, new user interfaces and novel interaction paradigms, with new opportunities in communication, gaming, media, social networking, sport and wellness. By enabling flexible (opto)electronics, graphene will allow the exploitation of the existing knowledge base and infrastructure of companies working on organic electronics (organic LEDs, conductive polymers, printable electronics), and a unique synergistic framework for collecting and underpinning many distributed technical competences. The strategic focus of the proposed Cambridge Graphene Centre will be in activities built around the central challenge of flexible and energy efficient (opto)electronics, for which graphene is a unique enabling platform. This will allow us to 1) grow and produce graphene by chemical vapour deposition and liquid phase exfoliation on large scale; 2) prepare and test inks, up to a controlled and closely monitored pilot line. The target is several litres per week of optimized solutions and inks, ready to be provided to present and future partners for testing in their plants; 3) design, test and produce a variety of flexible, antennas, detectors and RF devices based on graphene and related materials, covering all present and future wavelength ranges; 4) prototype and test flexible batteries and supercapacitors and package them for implementation in realistic devices. Our present and future industrial partners will be able to conduct pilot-phase research and device prototyping in this facility, before moving to larger scale testing in realistic industrial settings. Spin-off companies will be incubated, and start-ups will be able to contract their more fundamental work to this facility.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5db7fcb3ffef9b0dfaee1a65538a6437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5db7fcb3ffef9b0dfaee1a65538a6437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2022Partners:Electronics and Telecomm Res Inst ETRI, Centre for Process Innovation CPI (UK), National Physical Laboratory, Advent Technologies (Greece), University of Technology Zurich +84 partnersElectronics and Telecomm Res Inst ETRI,Centre for Process Innovation CPI (UK),National Physical Laboratory,Advent Technologies (Greece),University of Technology Zurich,De La Rue International Ltd,National Sch of Chemistry of Moulhouse,Imperial College London,WCPC,Nanoforce Technology Limited,The Linde Group,Flexink Ltd.,MOLECULAR VISION LIMITED,CSEM Brasil,National Renewable Energy Laboratory,CLIMATE-KIC (UK) LIMITED,CSEM,Linde (Germany),CPI,PragmatIC (United Kingdom),SOLAR PRESS,Commonwealth Scientific and Industrial Research Organisation,CSIRO,UK Centre for Materials Education,Tata Steel (United Kingdom),Korea Advanced Institute of Science and Technology,University of California at Santa Barbara,CDT,Advent Technologies Inc,UCSB,Solvay (Belgium),Linde (Germany),Max-Planck-Gymnasium,Climate KIC UK,UK Centre for Materials Education,CLIMATE-KIC (UK) LIMITED,NSG Group (UK),Oxford Photovoltaics (United Kingdom),Flexink Ltd.,PragmatIC Printing Ltd,NPL,NPL,FAU,Cambridge Display Technology Ltd (CDT),CPI,Molecular Vision,CDT,Solvay (International Chemical Group),Friedrich-Alexander University,KAIST,UK Centre for Materials Education,NREL,Max-Planck-Gymnasium,Oxford Photovoltaics (United Kingdom),NREL,Tata Group UK,Plastic Logic (United Kingdom),SEOUL NATIONAL UNIVERSITY,Plastic Logic (United Kingdom),Flexink Ltd.,NSG Holding (Europe) Limited,De La Rue (United Kingdom),Kurt J Lesker Co Ltd,University of California at Santa Barbara,PragmatIC Printing Ltd,Ecole Nationale,SEOUL NATIONAL UNIVERSITY,BASF AG,BASF (Germany),The Solar Press UK Ltd.,Erlangen Nuremberg University,Tata Steel (United Kingdom),Higher Education Academy,Kurt J Lesker Co Ltd,Kurt J. Lesker (United Kingdom),Centre for Process Innovation,ETHZ,Oxford Photovoltaics (United Kingdom),ETRI,Nanoforce Technology (United Kingdom),Nanoforce Technology Limited,Max Planck Institutes,Electronics and Telecomm Res Inst ETRI,Welsh Centre for Printing and Coating,Solvay (International Chemical Group),MOLECULAR VISION LIMITED,SOLAR PRESS,De La Rue International Ltd,ETH ZurichFunder: UK Research and Innovation Project Code: EP/L016702/1Funder Contribution: 4,234,900 GBPPlastic Electronics embodies an approach to future electronics in their broadest sense (including electronic, optoelectronic and photonic structures, devices and systems) that combines the low temperature, versatile manufacturing attributes of plastics with the functional properties of semiconductors and metals. At its heart is the development, processing and application of advanced materials encompassing molecular electronic materials, low temperature processed metals, metal oxides and novel hybrids. As such it constitutes a challenging and far-ranging training ground in tune with the needs of a wide spectrum of industry and academia alike. The general area is widely recognised as a rapidly developing platform technology with the potential to impact on multiple application sectors, including displays, signage and lighting, large area electronics, energy generation and storage, logistics, advertising and brand security, distributed sensing and medical devices. The field is a growth area, nationally and globally and the booming organic (AMOLED) display and printed electronics industries have been leading the way, with the emerging opportunities in the photonics area - i.e. innovative solid-state lighting, solar (photovoltaics), energy storage and management now following. The world-leading, agenda-setting UK academic PE research, much of it sponsored by EPSRC, offers enormous potential that is critical for the development and growth of this UK technology sector. PE scientists are greatly in demand: both upstream for materials, process and equipment development; and downstream for device fabrication and wide-ranging applications innovation. Although this potential is recognised by UK government and industry, PE makes a major contribution to the Advanced Materials theme identified in Science Minister David Willet's 'eight great technologies', growth is severely limited by the shortage of trained scientists and engineers capable of carrying ideas forward to application. This is confirmed by industry experts who argue that a comprehensive training programme is essential to deliver the workforce of scientists and engineers needed to create a sustainable UK PE Industry. The aim of the PE-CDT is to provide necessary training to develop highly skilled scientists and engineers, capable both of leading development and of contributing growth in a variety of aspects; materials-focused innovation, translation and manufacturing. The CDT brings together three leading academic teams in the PE area: the Imperial groups, with expertise in the synthesis, materials processing, characterisation, photonics and device physics, the Oxford team with expertise in ultrafast spectroscopes probes, meso and nano-structured composites, vacuum processing and up scaling as well as the material scientists and polymer technologists at QMUL. This compact consortium encompasses all the disciplines relevant to PE, including materials physics, optoelectronics, physical chemistry, device engineering and modelling, design, synthesis and processing as well as relevant industrial experience. The programme captures the essentially multidisciplinary nature of PE combining the low temperature, versatile manufacturing attributes of plastics with the functional properties of semiconductors and metals. Yet, to meet the needs of the PE industry, it also puts in place a deep understanding of basic science along with a strong emphasis on professional skills and promoting interdisciplinary learning of high quality, ranging across all areas of plastic electronics.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b4e8ef2a3645b2aed66c8d09e79b8b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b4e8ef2a3645b2aed66c8d09e79b8b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2018Partners:NPL, Technical University Eindhoven, NPL, UK Centre for Materials Education, University of Technology Zurich +17 partnersNPL,Technical University Eindhoven,NPL,UK Centre for Materials Education,University of Technology Zurich,BU,ETHZ,TU/e,BU,Nanoforce Technology (United Kingdom),Imperial College London,WCPC,Nanoforce Technology Limited,Nanoforce Technology Limited,UK Centre for Materials Education,UK Centre for Materials Education,National Physical Laboratory,Higher Education Academy,Eindhoven University of Technology,Bangor University,Welsh Centre for Printing and Coating,ETH ZurichFunder: UK Research and Innovation Project Code: EP/G037515/1Funder Contribution: 7,293,480 GBPPlastic electronics (PE) refers to the science and engineering of molecular electronic materials (MEMs), notably conjugated polymers, and their applications to areas such as displays, lighting, flexible electronics, solar energy conversion, sensing, and healthcare. The driving force behind PE is the fact that MEMs can be processed from solution, opening up device manufacture schemes using printing/coating processes similar to those used for conventional plastics. Compared to current inorganic-based technologies, this could lead to large reductions in cost and substantial energy savings when applied to the manufacture of solar cells or energy efficient plastic lighting products.Nationally and globally, markets for the first PE products (e.g. OLED displays) are expanding rapidly while large new markets emerge, in both developed and developing countries. Hence, exceptionally high demand exists globally for skilled scientists and engineers at all stages: in materials supply, device design, engineering and manufacture, and printing/coating equipment production.The world-leading, agenda-setting UK academic PE research, much of it sponsored by EPSRC, offers enormous potential for development and growth of this UK technology sector. Although this potential is recognised by UK government and industry, growth is severely limited by the shortage of trained scientists and engineers capable of carrying ideas forward to application. This is confirmed by industry experts who argue that a comprehensive training programme is essential to deliver the workforce of scientists and engineers needed to create a sustainable UK PE Industry.The proposed DTC addresses this need providing the first post-graduate programme focussed on the training of physical science graduates in PE science and technology. The DTC brings together two leading academic teams in the PE area: the ICL groups, with expertise in the physics, chemistry and application of MEMs, and the polymer technologists at QMUL. This compact, London-based consortium encompasses all the disciplines relevant to PE, including materials physics, optoelectronics, physical chemistry, device engineering and modelling, design, synthesis and processing of MEMs as well as relevant industrial experience. Both teams have been strengthened recently, both through new appointments and by expanded or refurbished laboratory space. This investment reflects the strategic intent of ICL and QMUL to foster the PE research area.The proposal aims to devlop an integrated postgraduate training programme, consisting of a one-year M.Res. degree with taught courses on all aspects of MEMs, and a formative research project, followed by a three-year PhD project. Training will continue throughout the four years via short courses in advanced topics, practical training (processing/characterisation techniques), and professional skills training (both generic and discipline specific). Ten students per annum will be supported by the DTC. An additional ten will be supported by project studentships, industrial and other sources to create a critical student mass leading to an output of 100 trained scientists after 8 years. A large fraction of the DTC's interdisciplinary projects will have industrial input, either through placement with partners, through co-supervision or through access to facilities offered by industrial partners. An open call for project proposals will enable new academic and industrial members to interact with the DTC, fostering and enlarging cross-disciplinary collaborations, and enable response of the DTC's research portfolio to the developing scientific and industrial scene.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a1622a64d58a678ff18a4cb8cd394564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a1622a64d58a678ff18a4cb8cd394564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu