Powered by OpenAIRE graph
Found an issue? Give us feedback

SPSE Ltd

SIEMENS PROCESS SYSTEMS ENGINEERING LIMITED
Country: United Kingdom
6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 955520
    Overall Budget: 4,043,980 EURFunder Contribution: 4,043,980 EUR

    Microalgae and other photosynthetic microorganisms represent a highly promising source for food, feed, chemicals, and fuels. Europe has been leading world research and industrial deployment of microalgae based technologies. However, despite the enormous potential and the impressive R&D effort, industrial use of microalgae is still at its first developmental stage. A major step forward can derive by the development and implementation of digital technologies, capable of automatizing and optimising culture conditions at industrial scale. Europe has a tradition of leading researches in the field of automatic control for biotechnological processes. As envisaged by DigitAlgaesation, the widespread definition and adoption of effective tools for better design and operation urgently requires skilled multidisciplinary scientists and engineers, who can develop and implement the next generation of sustainable production process with enhanced productivity, reduced environmental impact and costs, despite climate fluctuations that may strongly affect microalgae productivity. All this demands a European commitment to concerted, inter- and transdisciplinary research and innovation. DigitAlgaesation will train 15 early-stage researchers (ESRs) in all aspects of microalgae technological innovation to pave the way towards a knowledge-based breakthrough in monitoring methods and instrumentation, biological modelling and simulation, and automatic control. By training in scientific, technical and soft skills, they will become highly sought-after scientists and engineers for the rapidly emerging microalgae-based industry and broader bioprocessing industries of Europe.

    more_vert
  • Funder: European Commission Project Code: 723575
    Overall Budget: 6,537,270 EURFunder Contribution: 6,059,640 EUR

    The goal of CoPro is to develop and to demonstrate methods and tools for process monitoring and optimal dynamic planning, scheduling and control of plants, industrial sites and clusters under dynamic market conditions. CoPro will provide decision support to operators and managers and develop closed-loop solutions to achieve an optimally energy and resource efficient production. In most plants of the process industries, the energy and resource efficiency of the production depends critically on discrete decisions on the use of equipment, shutdowns, product changeovers and cleaning or regeneration of equipment. CoPro will consider these discrete decisions in plant-wide dynamic optimization and develop integrated scheduling and control solutions. Advanced online data analytics will be developed for plant health and product quality monitoring. The detection of anomalies will trigger fast re-scheduling and re-optimization. CoPro will demonstrate advanced plant-wide and site-wide coordination and control in five typical use cases that cover a wide range of sectors of the process industries, and the whole value chain: - Petrochemical production site - Base chemicals and polymer production site - Recycling system in cellulose production - Consumer product formulation and packaging plant - Food processing plant In addition,CoPro will develop methods for the coordination of plants in industrial parks that belong to different companies, thus providing a basis for future industrial symbiosis. CoPro pays special attention to the role of operators and managers in plant-wide control solutions and to the deployment of advanced solutions in industrial sites with a heterogeneous IT environment. As the effort required for the development and maintenance of accurate plant models is the bottleneck for the development and long-term operation of advanced control and scheduling solutions, CoPro will develop methods for efficient modelling and for model quality monitoring and model adaption

    more_vert
  • Funder: European Commission Project Code: 955661
    Overall Budget: 4,115,970 EURFunder Contribution: 4,115,970 EUR

    The overarching objective of TUSAIL is to train 15 creative, entrepreneurial and innovative Early Stage Researchers (ESRs) in developing, applying and validating novel methodologies for upscaling of particulate systems across the length-scales and this way to help advance the innovation capacity in European industry. Training and research of the ESRs will be structured involving multiple disciplines (physics, engineering, informatics and mathematics), internationally covered by all partners, and involving state-of-the-art research and transferable, intersectoral skills from both academia and industry. This will deliver a cohort of experts in upscaling techniques able to eliminate industry’s reliance on traditional, costly pilot plants and thereby enhance European competitiveness, reducing risks and saving valuable resources. The ambitious training goal will be completed by top-edge research in three research WPs that address three complementary methods to modernise upscaling with an overarching WP that combines calibration and validation, targeting applications in real-life industrial practice. The TUSAIL multidisciplinary team with top level academic institutions, complemented by leaders in the field from the nonacademic sector, will deliver ESRs with strongly enhanced career perspectives and the ability to address critical challenges in the field and at the same time strengthen Europe’s human capital base in R&I.

    more_vert
  • Funder: European Commission Project Code: 654465
    Overall Budget: 20,970,600 EURFunder Contribution: 11,932,200 EUR

    LEILAC, Low Emissions Intensity Lime And Cement, will successfully pilot a breakthrough technology that will enable both Europe’s cement and lime industries to reduce their emissions dramatically while retaining, or even increasing, international competitiveness. LEILAC will develop, build and operate a 240 tonne per day pilot plant demonstrating Direct Separation calcining technology which will capture over 95% of the process CO2 emissions (which is 60 % of total CO2 emissions) from both industries without significant energy or capital penalty. Direct Separation technology uses indirect heating in which the process CO2 and furnace combustion gases do not mix, resulting in the simple capture of high quality CO2. This innovation requires minimal changes to the conventional processes for cement, replacing the calciner in the Preheater-Calciner Tower. For lime there is no product contamination from the combustion gas. The technology can be used with alternative fuels and other capture technologies to achieve negative CO2 emissions. The project will also enable research into novel building materials with a reduced CO2 footprint, as well the upgrade of low value limestone fines and dust to high value lime applications. The high potential of the project is complemented by high deliverability. The requested grant will secure €8.8m of in-kind funding and support from the LEILAC consortium members, which include world leading engineering, cement, lime and R&D organisations. To accelerate further development, LEILAC will deliver a techno-economic roadmap, and comprehensive knowledge sharing activities including a visitor centre at the pilot site near Brussels. In order to reach the required 80% emissions reductions by 2050, CCS will need to be applied to 85% of European clinker production, and LEILAC is uniquely placed to allow Europe to achieve these targets in a timely, effective and efficient manner.

    more_vert
  • Funder: European Commission Project Code: 675585
    Overall Budget: 3,805,420 EURFunder Contribution: 3,805,420 EUR

    Mathematical, computational models are central in biomedical and biological systems engineering; models enable (i) mechanistically justifying experimental results via current knowledge and (ii) generating new testable hypotheses or novel intervention methods. SyMBioSys is a joint academic/industrial training initiative supporting the convergence of engineering, biological and computational sciences. The consortium's mutual goal is developing a new generation of innovative and entrepreneurial early-stage researchers (ESRs) to develop and exploit cutting-edge dynamic (kinetic) mathematical models for biomedical and biotechnological applications. SyMBioSys integrates: (i) six academic beneficiaries with a strong record in biomedical and biological systems engineering research, these include four universities and two research centres; (ii) four industrial beneficiaries including key players in developing simulation software for process systems engineering, metabolic engineering and industrial biotechnology; (iii) three partner organisations from pharmaceutical, biotechnological and entrepreneurial sectors. SyMBioSys is committed to supporting the establishment of a Biological Systems Engineering research community by stimulating programme coordination via joint activities. The main objectives of this initiative are: * Developing new algorithms and methods for reverse engineering and identifying dynamic models of biosystems and bioprocesses * Developing new model-based optimization algorithms for exploiting dynamic models of biological systems (e.g. predicting behavior in biological networks, identifying design principles and selecting optimal treatment intervention) * Developing software tools, implementing the preceding novel algorithms, using state-of-the-art software engineering practices to ensure usability in biological systems engineering research and practice * Applying the new algorithms and software tools to biomedical and biological test cases.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.