
ALLEIMA TUBE AB
ALLEIMA TUBE AB
11 Projects, page 1 of 3
Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2026Partners:Swerim AB, ACCIONA INSTALACIONES SA, CSIC, SUMITOMO SHI FW ENERGIA OY, CELSA OPCO, SA +12 partnersSwerim AB,ACCIONA INSTALACIONES SA,CSIC,SUMITOMO SHI FW ENERGIA OY,CELSA OPCO, SA,THOMAS ZEMENT GMBH WERK KARSDORF,VDZ Technology gGmbH,EU CORE,HUNOSA,ALLEIMA TUBE AB,STICHTING RADBOUD UNIVERSITEIT,IREN SPA,University of Stuttgart,LUT,LEAP,UBB,CARMEUSE TECHNOLOGIESFunder: European Commission Project Code: 101075416Overall Budget: 15,026,200 EURFunder Contribution: 15,026,200 EURCaLby2030 will be the enabling tool to achieve commercial deployment from 2030 of Calcium Looping using Circulating Fluidised Bed technology, CFB-CaL. Three TRL6 pilot plants across Europe (Sweden, Germany and Spain) will be developed for testing under industrially relevant operating conditions. To maximise impact, these pilots will investigate the decarbonisation of hard to abate CO2 emission sources: flue gases from modern and future steel-making processes that rely mainly on electricity, emissions from modern cement plants that cannot escape from the use of limestone, and from Waste-to-Energy and Bio-CHP power plants that fill the gap in scalable dispatchable power and allow for negative emissions. These pilots will collectively generate a database of over 4000 hours of operation. This data will be interpreted using advanced modelling tools to enable the scale-up of the key CO2 capture reactors to fully commercial scale. Process techno-economic simulation, cluster optimisation and Life Cycle Analysis will be performed to maximise renewable energy inputs and materials circularities. All this information will form the basis for undertaking FEED studies for the demonstration plants in at least four EU locations. Innovative CFB-CaL solutions will be developed and tested to reach >99% CO2 capture rates, reaching for some process schemes costs as low as 30 €/tCO2 avoided and energy intensities with Specific Primary Energy Consumption per CO2 Avoided below 0.8 MJ/kgCO2 when O2 from electrolysers is readily available as an industrial commodity. Societal scientists and environmental economists will assess the social acceptability and preferences for “zero” or “negative emissions” CaL demonstration projects with novel methodologies that will elucidate and help to overcome current societal barriers for the implementation of CCUS. The consortium includes the world-leading CFB process technology developer, key end user industries and leading academics including CaL pioneers.
more_vert Open Access Mandate for Publications assignment_turned_in Project2019 - 2024Partners:Zabala Innovation Consulting (Spain), Chemnitz University of Technology, Complutense University of Madrid, RWE, TEANDM +10 partnersZabala Innovation Consulting (Spain),Chemnitz University of Technology,Complutense University of Madrid,RWE,TEANDM,TUM,DOOSAN BABCOCK LIMITED,EIFER,Chalmers University of Technology,UNIPER TECHNOLOGIES LIMITED,INTA,CIEMAT,VALLOUREC TUBES FRANCE,ALLEIMA TUBE AB,TEKNOLOGIAN TUTKIMUSKESKUS VTT OYFunder: European Commission Project Code: 815147Overall Budget: 4,991,320 EURFunder Contribution: 4,991,320 EURThe primary objective of BELENUS is to lower bioenergy CAPEX and OPEX by an average of 5 and 60% respectively. This will be addressed by preventing or mitigating corrosion as the main limiting factor through a holistic approach to prevent corrosion in the boiler, in particular in superheater (SH) tubes: a) new surface engineering: biomass corrosion highly resistant coatings on creep resistance materials; b) new strategies of welding and bending for coated tubes improving the quality and efficiency of boiler components; and c) new online corrosion monitoring system specifically designed for biomass CHP plants. In addition, the BELENUS solution will impact on other LCOE parameters by improving efficiency in the conversion (up to 42%), increasing a 5% the operational hours of the plant and plant life time (5 years) and reducing the fuel expenditure of the plant by optimising its use and providing flexibility by allowing the use of different types of biomass. Improved performance for high temperature material systems through the technological breakthroughs, will be evaluated and validated an innovative test protocol. Finally, modelling and lifetime prediction tools will be developed and cost analysis and Life Cycle Analysis (LCA) undertaken so the optimum materials and coatings are chosen from the durability, economic and environmental perspectives, maximising the sustainability in economic and environmental terms. BELENUS brings together a multidisciplinary consortium comprising the main stakeholders with leading utilities, steel and tube developers, boiler designer and specialized research institutions from across Europe. This synergy allows a direct transfer of results in TRL5 to be obtained in BELENUS as technical base to go further to higher TRL into commercial biomass electric power plants within less than 5 years.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2024Partners:SINTEF AS, UiO, ALLEIMA TUBE AB, CSIC, PROTIA AS +3 partnersSINTEF AS,UiO,ALLEIMA TUBE AB,CSIC,PROTIA AS,ENGIE,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,DTUFunder: European Commission Project Code: 101007165Overall Budget: 2,931,790 EURFunder Contribution: 2,931,790 EURThe WINNER project will develop an efficient and durable technology platform based on electrochemical proton conducting ceramic (PCC) cells designed for unlocking a path towards commercially viable production, extraction, purification and compression of hydrogen at small to medium scale. This will be demonstrated in WINNER in three applications: ammonia cracking, dehydrogenation of hydrocarbons, and reversible steam electrolysis. By such, WINNER will create innovative solutions for flexible, secure and profitable storage and utilization of energy in the form of hydrogen and green ammonia, electrification of the chemical industry and sectors coupling. The WINNER project builds on the pioneering multidisciplinary expertise of world leading partners in the fields of proton conducting ceramic (PCC) materials and technologies to combine materials science, multi-scale multi-physics modelling and advanced in-situ and operando characterisation methods to unveil unprecedent performance of tubular PCC cells assembled in a flexible multi-tube module operating at industrially relevant conditions. WINNER will develop innovative cell architectures with multifunctional electrodes and a novel pressure-less current collection system using eco-friendly and scalable manufacturing routes. These activities will be steered by a novel multi-scale multi-physics modelling platform and enhanced experimentation methodologies. These tools combined with advanced operando and in situ methods will serve at establishing correlations between performance and degradation mechanisms associated with both materials properties and interface's evolution upon operation. Testing of cells and modules will also be conducted to define performance and durability in various operation modes. Techno-economic assessment of the novel PCC processes will be conducted as well as Life Cycle Assessment. The project is coordinated by SINTEF with support from UiO, CSIC, DTU, SMT, CTMS, ENGIE, Shell.
more_vert Open Access Mandate for Publications assignment_turned_in Project2017 - 2020Partners:HAIKU TECH EUROPE BV, MUKO MASCHINENBAU, AKTSIASELTS ELCOGEN, ENEA, TEKNOLOGIAN TUTKIMUSKESKUS VTT OY +3 partnersHAIKU TECH EUROPE BV,MUKO MASCHINENBAU,AKTSIASELTS ELCOGEN,ENEA,TEKNOLOGIAN TUTKIMUSKESKUS VTT OY,ELCOGEN OY,ALLEIMA TUBE AB,ELRINGKLINGER AGFunder: European Commission Project Code: 735160Overall Budget: 2,110,020 EURFunder Contribution: 2,110,020 EURqSOFC project combines leading European companies and research centres in stack manufacturing value-chain with two companies specialized in production automation and quality assurance to optimize the current stack manufacturing processes for mass production. Currently the state-of-the-art SOFC system capital expenditure (capex) is 7000…8000 €/kW of which stack is the single most expensive component. This proposal focuses on SOFC stack cost reduction and quality improvement by replacing manual labour in all key parts of the stack manufacturing process with automated manufacturing and quality control. This will lead to stack cost of 1000 €/kW and create a further cost reduction potential down to 500 €/kW at mass production (2000 MW/year). During the qSOFC project, key steps in cell and interconnect manufacturing and quality assurance will be optimized to enable mass-manufacturing. This will include development and validation of high-speed cell-manufacturing process, automated 3D machine vision inspection method to detect defects in cell manufacturing and automated leak-tightness detection of laser-welded/brazed interconnect-assemblies. The project is based on the products of its' industrial partners in stack-manufacturing value-chain (ElringKlinger, Elcogen AS, Elcogen Oy, Sandvik) and motivated by their interest to further ready their products into mass-manufacturing market. Two companies specialized in production automation and quality control (Müko, HaikuTech) provide their expertise to the project. The two research centres (VTT, ENEA) support these companies with their scientific background and validate the produced cells, interconnects and stacks. Effective exploitation and dissemination of resulting improved products, services, and know-how is a natural purpose of each partner and these actions are boosted by this project. This makes project results available also for other parties and increases competitiveness of the European fuel cell industry.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:Sunfire (Germany), AVL, ALLEIMA TUBE AB, SOLIDPOWER SPA, FZJ +5 partnersSunfire (Germany),AVL,ALLEIMA TUBE AB,SOLIDPOWER SPA,FZJ,TECNO,Chalmers University of Technology,DTU,STEEL,BORIT NVFunder: European Commission Project Code: 826323Overall Budget: 2,336,000 EURFunder Contribution: 2,336,000 EURLower costs and a better long-term stability are needed to accelerate commercialization of Solid Oxide Cell (SOC) technology. Among the enduring challenges is degradation related to the steel interconnect (IC) material and insufficient robustness of the contact between the IC and the cell. LOWCOST-IC will tackle these issues by developing, fabricating and demonstrating low-cost ICs and exceptionally tough contact layers for use in SOC stacks. Novel robust contact layers, utilizing the concept of reactive oxidative bonding, will substantially improve the mechanical contact between the cell and the interconnect, while ensuring a low and stable area specific resistance. The cost of SOC ICs will be reduced by combining cost-effective high volume steel grades with highly protective coatings. Large-scale mass manufacturing methods will be demonstrated for application of the coating by physical vapour deposition (PVD), for subsequent shaping of the ICs by hydroforming and finally for fast printing of contact layers by a drop-on-demand process. Novel computationally efficient stack models will together with hydroforming be customized to decrease the prototyping costs and thereby accelerate IC development. The new interconnect steels, coatings and contact layers will be implemented in the SOC stacks of two commercial manufacturers and undergo extensive testing in an industrially relevant environment. Finally, the cost-effectiveness of the proposed production route will be assessed and compared with existing production routes to facilitate a fast market entry of the project innovations. The overall effort will bring the technological solutions from their current TRL 3 to TRL 5. To achieve the optimum output, the LOWCOST-IC consortium comprises the entire interconnect and contact layer supply chain.
more_vert
chevron_left - 1
- 2
- 3
chevron_right