
Partnering in Innovation Incorporated
Partnering in Innovation Incorporated
1 Projects, page 1 of 1
assignment_turned_in ProjectFrom 2013Partners:LABORATOIRE D'ECONOMIE D'ORLEANS, UMR G2R - CNRS, LABORATOIRE D'ECONOMIE D'ORLEANS, CFG Services, GEOGREEN +9 partnersLABORATOIRE D'ECONOMIE D'ORLEANS,UMR G2R - CNRS,LABORATOIRE D'ECONOMIE D'ORLEANS,CFG Services,GEOGREEN,BRGM,UMR G2R - CNRS,CFG Services,Partnering in Innovation Incorporated,BRGM,Partnering in Innovation Incorporated,BGR,BGR,LABORATOIRE DECONOMIE DORLEANSFunder: French National Research Agency (ANR) Project Code: ANR-12-SEED-0009Funder Contribution: 632,534 EURThe objective of the CO2-DISSOLVED project is to assess the technical-economic feasibility of a novel CCS concept integrating (1) an innovative post-combustion deep-well CO2 capture and dissolution technology, (2) injection of dissolved CO2 instead of supercritical, and (3) combined geothermal heat recovery in the extracted brine via a doublet/surface heat exchanger system. This approach combines several objectives including renewable energy production, greenhouse gas reduction, and the assessment of a novel, low cost capture and storage method. Further, the proposed use of dissolved CO2 versus injection in a supercritical phase offers substantial benefits in terms of lower brine displacement risks, lower CO2 escape risks, lower to none pressure buildup in the storage aquifer, and the potential for more rapid mineralization. As another contributing novel factor, this proposal targets low to medium range CO2-emitters (10-100 kt/yr), that could be compatible with a single doublet installation. Unlike the standard approach which focuses on very large regional emitters (1-5 Mt/yr), the proposed CO2-DISSOLVED concept opens new potential opportunities for local storage solutions dedicated to low emitters such as food, paper, or glass industry, building materials makers, etc. Since it is intended to be a local solution, the costs related to CO2 transport would then be dramatically reduced, provided that the local underground geology is favourable. On the other hand, the heat recovered could benefit directly to the industrial emitters for their own heating and/or process needs and possibly for heating other collective buildings close to the storage facility. This project is divided in four main technical tasks addressing the following points: - Task 1: Applicability of the Aqueous-based CO2 Capture and Dissolution Facility technology, - Task 2: Efficiency of the Coupled CO2 Injection/Geothermal Heat Extraction System, - Task 3: Monitoring and Risk assessment, - Task 4: Integrated Technical-Financial Feasibility Analysis Applied to two Test-cases (France, Germany). Though being mainly a feasibility study relying on engineering methodologies, the achievement of this project will also have to rely on ambitious research work in order to address the following points: - Standard monitoring and risk analysis approaches need be revisited as a function of the new features and constraints of the CO2-DISSOLVED approach. Innovative geochemical and geophysical monitoring solutions are intended to be evaluated and tested, both on-field and in-lab. A new risk analysis methodology will be specifically designed and applied in accordance with the modelled and observed properties of the whole system. - The potential acidified brine reactivity will now be delivered out of the injection well, unlike the standard supercritical approach where the acid front followed the extension of the CO2 plume. Specific work, focusing on the near-well area and relying on both new experimental and modelling approaches will be carried out in this project. A new experimental facility will be available for future experiments involving injection of dissolved CO2. - The association of CCS to geothermal heat production, applied locally to small CO2-emitters, makes partly obsolete previous conceptual economic models. New models will then have to be developed, validated, and applied to two application test-cases (one in France, one in Germany). The expected results will permit to have at our disposal a complete portfolio of innovative technologies associated with adapted experimental and theoretical tools, so that in case of positive conclusions on the feasibility of this concept, promising industrial applications could be envisaged on the short term by the end of this 30 month project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::14329a2fb3931d641aa1746e32fb1976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::14329a2fb3931d641aa1746e32fb1976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu