
Airbus Defence and Space
Airbus Defence and Space
22 Projects, page 1 of 5
assignment_turned_in Project2019 - 2027Partners:AVID Vehicles Ltd, EEF, OFFSHORE RENEWABLE ENERGY CATAPULT, Dyer Engineering ltd, OpTek Systems +87 partnersAVID Vehicles Ltd,EEF,OFFSHORE RENEWABLE ENERGY CATAPULT,Dyer Engineering ltd,OpTek Systems,Jeol UK Ltd,Saint Gobain,Power Roll (United Kingdom),Huazhong University of Science and Technology,Northumbria University,EEF,GREEN FUELS LTD,Knowledge Transfer Network Ltd,UoC,YeadonIP Ltd,Siemens (United Kingdom),Shell Research UK,Equiwatt Limited,OpTek Systems (United Kingdom),SP Energy Networks,AVID Vehicles Ltd,Hiden Analytical Ltd,Knowledge Transfer Network,Dyer Engineering ltd,Kurt J. Lesker (United Kingdom),Nanyang Technological University,Saint Gobain,GREEN FUELS LTD,Airbus Defence and Space,Shell (United Kingdom),Great North Museum Hancock,Shell Research UK,XEMC DARWIND,Scottish Power Energy Networks Holdings Limited,The Great North Museum: Hancock,Oxford Instruments (United Kingdom),Scottish Power Energy Networks Holdings Limited,SIEMENS PLC,Northumbria University,Siemens PLC,Enocell Ltd,Jeol UK Ltd,NTU,University of Calgary,Huazhong University of Sci and Tech,XEMC DARWIND,Northumbria University,Intray,Power Roll,Oxford Instruments (United Kingdom),Hiden Analytical (United Kingdom),Hitachi (United Kingdom),Solar Capture Technologies,UL,Equiwatt Limited,Intray,POWER ROLL LIMITED,HITACHI EUROPE LIMITED,Durham County Council,Kurt J Lesker Co Ltd,Offshore Renewable Energy Catapult,HORIBA Jobin Yvon IBH Ltd,University of Cambridge,Kurt J Lesker Co Ltd,Huazhong University of Sci and Tech,Solar Capture Technologies,Johnson Matthey (United Kingdom),Airbus Defence and Space,Johnson Matthey,University of Cambridge,Enocell Ltd,Airbus (United Kingdom),TESCAN Digital Microscopy Imaging,Durham County Council,UNIVERSITY OF CAMBRIDGE,SIEMENS PLC,Offshore Renewable Energy Catapult,TESCAN BRNO SRO,Johnson Matthey Plc,EpiValence Ltd,Durham County Council,Green Fuels Research,EpiValence Ltd,Oxford Instruments (United Kingdom),JEOL (United Kingdom),Tescan (Czechia),Horiba UK Ltd,HORIBA Jobin Yvon IBH Ltd,AVID Vehicles Ltd,OpTek Systems,YeadonIP Ltd,HITACHI EUROPE LIMITEDFunder: UK Research and Innovation Project Code: EP/S023836/1Funder Contribution: 5,476,500 GBPThe EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ab7257860ff3e82767d5646bae2d8f88&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ab7257860ff3e82767d5646bae2d8f88&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Precision Acoustics (United Kingdom), Stryker International, Zilico Ltd, Polatis (United Kingdom), Xtera Communications Limited +96 partnersPrecision Acoustics (United Kingdom),Stryker International,Zilico Ltd,Polatis (United Kingdom),Xtera Communications Limited,PHOTON DESIGN LIMITED,Waveoptics,Waveoptics,Optalysys Ltd,VividQ,Precision Acoustics (United Kingdom),Precision Acoustics (United Kingdom),Continental (Germany),Plessey Semiconductors Ltd,Xtera Communications Limited,BAE Systems (Sweden),PragmatIC Printing Ltd,Thales Group,PragmatIC Printing Ltd,Oclaro Technology UK,University of Cambridge,Zilico Ltd,Huawei Technologies (UK) Co. Ltd,McWane Technology (United Kingdom),Hitachi Cambridge Laboratory,Chromacity (United Kingdom),Integer Holdings Corporation,Xilinx (Ireland),Oclaro (United Kingdom),Analog Devices Inc (Global),Continental Automotive GmbH,Defence Science & Tech Lab DSTL,Defence Science & Tech Lab DSTL,BT Group (United Kingdom),Hitachi Cambridge Laboratory,HUBER+SUHNER Polatis Ltd,PLESSEY SEMICONDUCTORS LIMITED,Leonardo MW Ltd,Teraview Ltd,Anvil Semiconductors Ltd,Chromacity Ltd.,Airbus Defence and Space,Phasor Solutions Ltd,BT Group (United Kingdom),The Rockley Group UK,Toshiba (United Kingdom),Phasor Solutions Ltd,Xtera Communications Limited,Defence Science & Tech Lab DSTL,Thales Group (UK),UCL,Huawei Technologies (United Kingdom),PervasID Ltd,Leonardo MW Ltd,General Electric (United Kingdom),Stryker International,VividQ,MICROSOFT RESEARCH LIMITED,PHOTON DESIGN LIMITED,British Telecommunications plc,TREL,FAZ Technology Limited,BAE Systems (UK),Zinwave,aXenic Ltd.,TREL,Eight19 Ltd,Defence Science and Technology Laboratory,Hitachi Cambridge Laboratory,Oclaro Technology UK,The Rockley Group UK,Thales Group,PragmatIC (United Kingdom),Eight19 (United Kingdom),Inphenix,PervasID Ltd,Integer Holdings Corporation,FAZ Technology Limited,Inphenix,Eight19 Ltd,Optalysys Ltd,Eblana Photonics (Ireland),TeraView (United Kingdom),MICROSOFT RESEARCH LIMITED,Photon Design (United Kingdom),PLESSEY SEMICONDUCTORS LIMITED,BAE Systems (Sweden),BAE Systems (United Kingdom),Airbus (United Kingdom),Analog Devices,Chromacity Ltd.,Teraview Ltd,Anvil Semiconductors (United Kingdom),Airbus Defence and Space,Xilinx (Ireland),Thales (United Kingdom),aXenic Ltd.,Microsoft Research (United Kingdom),Huawei Technologies (UK) Co. Ltd,Zinwave,Teraview LtdFunder: UK Research and Innovation Project Code: EP/S022139/1Funder Contribution: 5,419,250 GBPThis proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2026Partners:NPL, Element Six (UK) Ltd, Element Six Ltd (UK), Seagate (United Kingdom), UofT +46 partnersNPL,Element Six (UK) Ltd,Element Six Ltd (UK),Seagate (United Kingdom),UofT,University of Manchester,Seagate Technology (Ireland),Hitachi High-Technologies Europe GmbH,National Physical Laboratory,Carl Zeiss Microscopy GmbH,DNA ELECTRONICS LTD,DNA Electronics (United Kingdom),Compound Semiconductor Centre,Australian National University (ANU),Qioptiq Ltd,Qioptiq Ltd,Ecole Normale Superieure,Oxford Instruments plc,Airbus Defence and Space,DNA ELECTRONICS LTD,Ericsson (Sweden),Ecole Normale Superieure,Hitachi High-Technologies Europe GmbH,Australian National University,Carl Zeiss (Germany),Airbus Defence and Space,Seagate (Ireland),Qinetiq (United Kingdom),BAE Systems (United Kingdom),Airbus (United Kingdom),Element Six Ltd (UK),BAE SYSTEMS PLC,The University of Manchester,Ionoptika (United Kingdom),NPL,Ericsson AB,Oxford Instruments,University of Salford,Ionoptika Ltd,Henry Royce Institute,Keysight Technologies,Keysight Technologies (United States),École Normale Supérieure - PSL,Normal Superior School of Paris Ulm,BAE Systems,Henry Royce Institute,University of Melbourne,Element Six (United Kingdom),Compound Semiconductor Centre (United Kingdom),Oxford Instruments (United Kingdom),Carl Zeiss Microscopy GmbHFunder: UK Research and Innovation Project Code: EP/V001914/1Funder Contribution: 7,671,800 GBPDevelopment of materials has underpinned human and societal development for millennia, and such development has accelerated as time has passed. From the discovery of bronze through to wrought iron and then steel and polymers the visible world around has been shaped and built, relying on the intrinsic properties of these materials. In the 20th century a new materials revolution took place leading to the development of materials that are designed for their electronic (e.g. silicon), optical (e.g. glass fibres) or magnetic (e.g. recording media) properties. These materials changed the way we interact with the world and each other through the development of microelectronics (computers), the world wide web (optical fibre communications) and associated technologies. Now, two decades into the 21st century, we need to add more functionality into materials at ever smaller length-scales in order to develop ever more capable technologies with increased energy efficiency and at an acceptable manufacturing cost. In pursuing this ambition, we now find ourselves at the limit of current materials-processing technologies with an often complex interdependence of materials properties (e.g. thermal and electronic). As we approach length scales below 100s of nanometres, we have to harness quantum effects to address the need for devices with a step-change in performance and energy-efficiency, and ultimately for some cases the fundamental limitations of quantum mechanics. In this programme grant we will develop a new approach to delivering material functionalisation based on Nanoscale Advanced Materials Engineering (NAME). This approach will enable the modification of materials through the addition (doping) of single atoms through to many trillions with extreme accuracy (~20 nanometres, less than 1000th the thickness of a human hair). This will allow us to functionalise specifically a material in a highly localised location leaving the remaining material available for modification. For the first time this will offer a new approach to addressing the limitations faced by existing approaches in technology development at these small length scales. We will be able to change independently a material's electronic and thermal properties on the nanoscale, and use the precise doping to deliver enhanced optical functionality in engineered materials. Ambitiously, we aim to use NAME to control material properties which have to date proven difficult to exploit fully (e.g. quantum mechanical spin), and to control states of systems predicted but not yet directly experimentally observed or controlled (e.g. topological surface states). Ultimately, we may provide a viable route to the development of quantum bits (qubits) in materials which are a pre-requisite for the realisation of a quantum computer. Such a technology, albeit long term, is predicted to be the next great technological revolution NAME is a collaborative programme between internationally leading UK researchers from the Universities of Manchester, Leeds and Imperial College London, who together lead the Henry Royce Institute research theme identified as 'Atoms to Devices'. Together they have already established the required substantial infrastructure and state-of-the-art facilities through investment from Royce, the EPSRC and each University partner. The programme grant will provide the resource to assemble the wider team required to deliver the NAME vision, including UK academics, research fellows, and postdoctoral researchers, supported by PhD students funded by the Universities. The programme grant also has significant support from wider academia and industry based both within the UK and internationally.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a2c1179f36754e68245befe09cc0c12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4a2c1179f36754e68245befe09cc0c12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2024Partners:BT Research, MTC, XCAM Ltd, Qioptiq Ltd, Magnetic Shields Limited +135 partnersBT Research,MTC,XCAM Ltd,Qioptiq Ltd,Magnetic Shields Limited,Severn Trent (United Kingdom),Defence Science & Tech Lab DSTL,Oxford Electromagnetic Solutions Limited,Network Rail,Magnetic Shields Limited,M Squared Lasers (United Kingdom),Skyrora Limited,Bridgeporth,Canal and River Trust,BALFOUR BEATTY RAIL,Added Scientific Ltd,Teledyne e2v (United Kingdom),Oxford Electromagnetic Solutions Limited,General Lighthouse Authorities,Geomatrix,BP INTERNATIONAL LIMITED,Airbus Defence and Space,Skyrora Limited,Knowledge Transfer Network Ltd,QuSpin,Severn Trent Group,BT,Collins Aerospace,Atkins Global (UK),Atkins (United Kingdom),Forresters,National Physical Laboratory,Collins Aerospace,MBDA UK Ltd,Knowledge Transfer Network,Defence Science & Tech Lab DSTL,Ferrovial (United Kingdom),J Murphy & Sons Limited,The Coal Authority,Ordnance Survey,Leonardo MW Ltd,Torr Scientific Ltd,OS,Nemein,Shield Therapeutics (United Kingdom),Added Scientific Ltd,MBDA UK Ltd,Torr Scientific Ltd,ITM Monitoring,Fraunhofer UK Research Ltd,RSK Group plc,Qinetiq (United Kingdom),BALFOUR BEATTY PLC,Leonardo MW Ltd,Re:Cognition Health,Amey Plc,J Murphy & Sons Limited,e2v technologies plc,General Lighthouse Authorities,Oxford Instruments (United Kingdom),Cardno,Atomic Weapons Establishment,Cardno,University of Birmingham,Amey Plc,British Telecommunications Plc,Geomatrix,Laser Quantum Ltd,NPL,OS,MBDA (United Kingdom),University of Birmingham,RSK Group plc,NPL,ITM,National Centre for Trauma,Canal and River Trust,Network Rail,The Coal Authority,USYD,RedWave Labs,Bridgeporth,Geometrics,Royal Institute of Navigation,Fraunhofer UK Research Ltd,Nemein,Re:Cognition Health Limited,RedWave Labs,Shield,M Squared Lasers (United Kingdom),Royal IHC (UK),Oxford Electromagnetic Solutions Limited,Network Rail,Jacobs (United States),BP International Limited,Atkins Global,BAE Systems (UK),Geometrics,PA CONSULTING SERVICES LIMITED,Defence Science and Technology Laboratory,Northrop Gruman (UK),Unitive Design & Analysis Ltd,J Murphy & Sons Limited,PA Consulting Group,Oxford Instruments (United Kingdom),ESP Central Ltd,Royal IHC (UK),Severn Trent Group,Jacobs,ESP Central Ltd,BAE Systems (Sweden),PA CONSULTING SERVICES LIMITED,BAE Systems (United Kingdom),Airbus (United Kingdom),PA Consulting Group,BP (United Kingdom),MTC,M Squared Lasers (United Kingdom),Manufacturing Technology Centre (United Kingdom),Forresters,AWE,QuSpin (United States),National Centre for Trauma,Airbus Defence and Space,Unitive Design and Analysis Ltd.,The Royal Institute of Navigation,Northrop Gruman,e2v technologies plc,RSK Group plc,Novanta (United Kingdom),BAE Systems (Sweden),XCAM Ltd (UK),ESP Central (United Kingdom),Oxford Instruments (United Kingdom),Laser Quantum Ltd,BALFOUR BEATTY RAIL,Defence Science & Tech Lab DSTL,SEVERN TRENT WATER LIMITED,Qioptiq Ltd,Balfour Beatty (United Kingdom)Funder: UK Research and Innovation Project Code: EP/T001046/1Funder Contribution: 23,949,200 GBPThe Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0ac285ebd9933540a6a7e68064c01802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2023Partners:Swansea University, Airbus Defence and Space, TWI Technology Centre Wales, Swansea University, Nikon +15 partnersSwansea University,Airbus Defence and Space,TWI Technology Centre Wales,Swansea University,Nikon,Synopsys Inc.,Nikon (International),Synopsys (International),EURATOM/CCFE,University of Manchester,Airbus Defence and Space,Synopsys (United States),The University of Manchester,EURATOM/CCFE,UK ATOMIC ENERGY AUTHORITY,United Kingdom Atomic Energy Authority,TWI Technology Centre Wales,Airbus (United Kingdom),The Welding Institute,University of SalfordFunder: UK Research and Innovation Project Code: EP/R012091/1Funder Contribution: 1,025,110 GBPThis fellowship programme will apply state-of-the-art 3D image processing and machine learning methods, developing them further where necessary, to deliver a new software tool that performs industrial production line 'virtual qualification' using part-specific simulations from 3D X-ray imaging in high-value manufacturing (HVM). Qualification is when manufactured parts are verified fit for purpose, often achieved by performing experimental tests representative of in-service conditions. Virtual qualification will verify by modelling micro-accurate digital replicas of the final part (flaws included) replacing costly and time-consuming experimental methods. Additionally, this will assess defects for performance impact (rather than expensive but unspecific pass/fail testing). The challenge is that image-based modelling currently requires significant human interaction over a timescale of weeks. Applying this to many parts takes significant time to complete unless methodology can be changed. The novelty of this proposal is to use machine learning with foreknowledge, due to production line parts being similar, to automate conversion of microresolution 3D images into part-specific models that simulate in-service conditions. This automation is required for the technique to scale for deployment in industrial manufacturing. Additionally, because much of the decision making entailed is subjective, and therefore prone to human error, a consequential benefit of automation is consistent outputs by removing this variability. This proposal focuses on image-based finite element methods (IBFEM), which merge real and virtual worlds to account for deviations caused by manufacturing processes not considered by design-based finite element methods (FEM), e.g. due to tolerancing or micro-defects. This implementation of part-specific modelling has applications in advanced manufacturing wherever there is variability from one component to another e.g. additive manufacturing or composites. A case study will be undertaken with the UK Atomic Energy Authority (UKAEA) for a heat exchange component. This will showcase the capabilities of the technique to automatically produce a report that estimates the impact of deviations from design on performance. Unlike FEM, which have undergone extensive certification and are industry-wide trusted methods, there has not been a systematic approach which can be used to benchmark image-based modelling workflows against verified experimental data. This work will produce benchmarks based on standards for experimental measurements of thermomechanical material properties to give confidence in the technique for industrial adoption. The database of benchmarks will be useful for those wishing to use image-based modelling to validate workflows and could contribute towards establishing new standards in the field. Central to this proposal is the use of FEM, the de-facto tool for predicting thermomechanical performance in engineering. Prof Zienkiewicz's research at Swansea University established it as a birthplace for FEM, and is now recognised as a leading research centre in the field. The team undertaking this fellowship, led by Dr Llion Evans, will be based at the Zienkiewicz Centre for Computational Engineering, Swansea University and will work in collaboration with the centre's head, Prof Nithiarasu, an expert in image-based modelling for biomechanics. Access to the equipment required for all aspects of this highly multidisciplinary work i.e. thermomechanical characterisation, 3D imaging and computing is available through complementary centres at the College of Engineering, Swansea University. To support this extremely multidisciplinary work, key industrial organisations will be collaborating on this project. Nikon Metrology Ltd. (X-ray imaging systems), Synopsys Inc. (image processing software), TWI (non-destructive testing and industrial standards), UKAEA (energy generation end-user) and Airbus (aerospace end-user).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d41d50627066052eaece181144679a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d41d50627066052eaece181144679a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right