
UNIVERSITE DE NANTES
UNIVERSITE DE NANTES
82 Projects, page 1 of 17
assignment_turned_in ProjectFrom 2006Partners:Vision Objects (France), Vision Objects (France), UNIVERSITE DE NANTESVision Objects (France),Vision Objects (France),UNIVERSITE DE NANTESFunder: French National Research Agency (ANR) Project Code: ANR-06-TLOG-0009Funder Contribution: 557,784 EURmore_vert assignment_turned_in ProjectFrom 2005Partners:RENAULT SAS, UNIVERSITE DE PARIS XI [PARIS- SUD], CETH, HELION, UNIVERSITE DE NANTESRENAULT SAS,UNIVERSITE DE PARIS XI [PARIS- SUD],CETH,HELION,UNIVERSITE DE NANTESFunder: French National Research Agency (ANR) Project Code: ANR-05-PANH-0011Funder Contribution: 835,109 EURmore_vert assignment_turned_in ProjectFrom 2012Partners:UNIVERSITE DE PARIS XI [PARIS- SUD], UNIVERSITE DE RENNES I, UNIVERSITE DE NANTESUNIVERSITE DE PARIS XI [PARIS- SUD],UNIVERSITE DE RENNES I,UNIVERSITE DE NANTESFunder: French National Research Agency (ANR) Project Code: ANR-11-BS01-0019Funder Contribution: 219,876 EURThe aim of this project is to study refined spectral, microlocal or semi-classical estimates for mainly non-selfadjoint operators and their applications to dynamical and evolution problems. This involves in particular resolvent type estimates, spectral and pseudospectral estimates, numerical simulations, Weyl law type estimates and resonances results. By evolution problems we mean scattering, diffusion, dissipation, damping, propagation or return to the equilibrium phenomena, arising in kinetic theory, relativity, superconductivity, oceanography and more generally mathematical physics. The central idea of the project is to help interplay between researchers working on estimates and researchers studying or modeling evolution problems.
more_vert assignment_turned_in ProjectFrom 2015Partners:CY Cergy Paris University, Paris 13 University, UNIVERSITE NICE SOPHIA ANTIPOLIS Laboratoire Jean Alexandre Dieudonné, UNIVERSITE NICE SOPHIA ANTIPOLIS Laboratoire Jean Alexandre Dieudonné, LAGA +2 partnersCY Cergy Paris University,Paris 13 University,UNIVERSITE NICE SOPHIA ANTIPOLIS Laboratoire Jean Alexandre Dieudonné,UNIVERSITE NICE SOPHIA ANTIPOLIS Laboratoire Jean Alexandre Dieudonné,LAGA,UNIVERSITE DE NANTES,LMBAFunder: French National Research Agency (ANR) Project Code: ANR-15-CE40-0001Funder Contribution: 304,450 EURThe projet de recherche collaboratif ``Beyond KAM theory'' is a project in Mathematics. Its goal is the study of dynamical systems both in finite and infinite dimensions in view of applications to partial differential equations and spectral theory. More specifically, we will be interested in systems displaying quasi-periodic behaviors which means displaying quasi-periodic patterns in time or space. A fundamental tool in this approach is the so-called KAM theory (for Kolmogorov, Arnold, Moser) that allows to prove, for certain perturbations of integrable hamiltonian systems, the existence of invariant tori on which the dynamics of these systems is quasi-periodic. KAM theory is a powerful tool: its range of application goes from the study of one-dimensional dynamical systems (circle diffeomorphisms) to that of infinite dimensional hamiltonian systems such as hamiltonian partial differential equations. The domain of application of KAM theory is nevertheless hampered by three classical restrictions: KAM method generally applies to perturbations of simple model systems ; (b) small divisors phenomena impose quantitative non-resonance conditions; (c) the existence of resonances and their geometry often make necessary the introduction of parameters and non-degeneracy assumptions on the way these parameters control the system. One main goal of our project will be, whenever possible and for different types of systems, to go beyond these restrictions. The systems we will consider are finite dimensional hamiltonian systems, diffeomorphisms of the circle, of the disk and of the torus, quasiperiodic cocycles jointly with quasiperiodic Schrödinger operators and hamiltonian partial differential equations. The funding of this project by the Agence Nationale de Recherche, that will last 4 years, will allow the collaboration of mathematicians, with complementary skills (dynamical systems, small divisors, hamiltonian theory, partial differential equations, normal forms, cocycles) and that use in their research KAM theory as a fundamental tool. The partners of the project are: (a) Partner at Nantes, Lab. J. Leray, Univ. Nantes: Benoît Grébert (representative), Eric Paturel, Georgi Popov, Laurent Thomann; (b) Partner at Nice, Lab. J.A. Dieudonné, Univ. Nice Sophia Antipolis: Philippe Bolle, Claire Chavaudret, Laurent Stolovitch (representative); (c) Partner at Paris, Lab. de Prob. et Mod. Aléat., Univ. Pierre et Marie Curie: Artur Avila, Abed Bounemoura, Hakan Eliasson, Bassam Fayad, Jacques Féjoz, Sergei Kuksin, Raphaël Krikorian (coordinator), Laurent Niederman and Jean-Christophe Yoccoz. The funding will allow the organization of one international conference gathering international leading experts, four annual meetings where all the participants of the project will present their current works, and one summer or winter school. This funding will also permit deeper collaborations between the member of the project and, through various invitations, with other worldwide experts; it will allow the members of the project to participate to conferences in the field, and this way, to diffuse and deepen their ideas. The financial support of missions for the members of the project or for their PhD students (in particular to attend the summer or winter schools) is an important point. Finally, this financial support will make possible the hiring of two post-doctoral researchers each financed for one year. The amount of the requested funding is 305 keuros.
more_vert assignment_turned_in ProjectFrom 2005Partners:VITEC, UNIVERSITE DE NANTESVITEC,UNIVERSITE DE NANTESFunder: French National Research Agency (ANR) Project Code: ANR-05-RIAM-0014Funder Contribution: 829,942 EURmore_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right