
Networked Quantum Information Technology
Networked Quantum Information Technology
2 Projects, page 1 of 1
assignment_turned_in Project2019 - 2028Partners:Chronos Technology Limited, TREL, University of Waterloo (Canada), Quantum Benchmark, TREL +104 partnersChronos Technology Limited,TREL,University of Waterloo (Canada),Quantum Benchmark,TREL,SU,PsiQuantum Corp.,Defence Science & Tech Lab DSTL,Xanadu,Helibronn Institute,Rigetti & Co Inc,Oxford Instruments (United Kingdom),Keysight Technologies (United Kingdom),Defence Science & Tech Lab DSTL,M Squared Lasers (United Kingdom),Hitachi Cambridge Laboratory,ARC Centre of Excellence for Engineered Quantum Systems,National Physical Laboratory,Microsoft (United States),RedWave Labs,Ultrahaptics Ltd,Nabla Ventures,University of Waterloo (Canada),Airbus Defence and Space,Quantum Benchmark,University of Sussex,Sandia National Laboratories California,Hitachi Cambridge Laboratory,ICE Oxford Limited,Helibronn Institute,Airbus Defence and Space,Thales Group,Keysight Technologies UK Ltd,Chronos Technology (United Kingdom),Nabla Ventures,Quantum Technology Hub,Microsoft Research,QuantIC,Fraunhofer UK Research Ltd,PhaseCraft Ltd,Quantum Communications Hub (QComm),RedWave Labs,University of Sussex,RayCal,QxBranch,Riverlane,University of Copenhagen,University of Bristol,Fraunhofer UK Research Ltd,Microsoft Research,Hewlett-Packard Company Inc,Oxford Instruments (United Kingdom),NPL,Ultrahaptics (United Kingdom),BTEXACT,ID Quantique (Switzerland),Thales (United Kingdom),Fluoretiq,University of Cambridge,River Lane Research,Quantum Communications Hub (QComm),Xanadu,Stanford University,Stanford University,QxBranch,Rigetti & Co Inc,Hewlett-Packard (United States),BT Group (United Kingdom),Toshiba (United Kingdom),Imperial College London,QuantIC,EQUS,PhaseCraft Ltd.,Hewlett-Packard Company Inc,University of Copenhagen,QLM Technology Ltd,University of Waterloo,Defence Science & Tech Lab DSTL,Thales Group,BTEXACT,M Squared Lasers (United Kingdom),Chronos Technology Limited,University of Bristol,Quandela SAS,Oxford Instruments (United Kingdom),1QBit,Quandela SAS,M Squared Lasers (United Kingdom),ICE Oxford Limited,PsiQuantum Corp.,Thales Group (UK),Sandia National Laboratories,ID Quantique,KETS Quantum Security Ltd,Sandia National Laboratories,Networked Quantum Information Technology,Networked Quantum Information Technology,Hitachi Cambridge Laboratory,RayCal,Quantum Technology Hub,Airbus (United Kingdom),Google Inc,1QBit,Defence Science and Technology Laboratory,Google (United States),Kets-Quantum Security limited,NPL,QLM Technology Ltd.,FluoretiqFunder: UK Research and Innovation Project Code: EP/S023607/1Funder Contribution: 5,461,020 GBPQuantum Technologies (QT) are at a pivotal moment with major global efforts underway to translate quantum information science into new products that promise disruptive impact across a wide variety of sectors from communications, imaging, sensing, metrology, simulation, to computation and security. Our world-leading Centre for Doctoral Training in Quantum Engineering will evolve to be a vital component of a thriving quantum UK ecosystem, training not just highly-skilled employees, but the CEOs and CTOs of the future QT companies that will define the field. Due to the excellence of its basic science, and through investment by the national QT programme, the UK has positioned itself at the forefront of global developments. There have been very recent major [billion-dollar] investments world-wide, notably in the US, China and Europe, both from government and leading technology companies. There has also been an explosion in the number of start-up companies in the area, both in the UK and internationally. Thus, competition in this field has increased dramatically. PhD trained experts are being recruited aggressively, by both large and small firms, signalling a rapidly growing need. The supply of globally competitive talent is perhaps the biggest challenge for the UK in maintaining its leading position in QT. The new CDT will address this challenge by providing a vital source of highly-trained scientists, engineers and innovators, thus making it possible to anchor an outstanding QT sector here, and therefore ensure that UK QT delivers long-term economic and societal benefits. Recognizing the nature of the skills need is vital: QT opportunities will be at the doctoral or postdoctoral level, largely in start-ups or small interdisciplinary teams in larger organizations. With our partners we have identified the key skills our graduates need, in addition to core technical skills: interdisciplinary teamwork, leadership in large and small groups, collaborative research, an entrepreneurial mind-set, agility of thought across diverse disciplines, and management of complex projects, including systems engineering. These factors show that a new type of graduate training is needed, far from the standard PhD model. A cohort-based approach is essential. In addition to lectures, there will be seminars, labs, research and peer-to-peer learning. There will be interdisciplinary and grand challenge team projects, co-created and co-delivered with industry partners, developing a variety of important team skills. Innovation, leadership and entrepreneurship activities will be embedded from day one. At all times, our programme will maximize the benefits of a cohort-based approach. In the past two years particularly, the QT landscape has transformed, and our proposed programme, with inputs from our partners, has been designed to reflect this. Our training and research programme has evolved and broadened from our highly successful current CDT to include the challenging interplay of noisy quantum hardware and new quantum software, applied to all three QT priorities: communications; computing & simulation; and sensing, imaging & metrology. Our programme will be founded on Bristol's outstanding activity in quantum information, computation and photonics, together with world-class expertise in science and engineering in areas surrounding this core. In addition, our programme will benefit from close links to Bristol's unique local innovation environment including the visionary Quantum Technology Enterprise Centre, a fellowship programme and Skills Hub run in partnership with Cranfield University's Bettany Centre in the School of Management, as well as internationally recognised incubators/accelerators SetSquared, EngineShed, UnitDX and the recently announced £43m Quantum Technology Innovation Centre. This will all be linked within Bristol's planned £300m Temple Quarter Enterprise Campus, placing the CDT at the centre of a thriving quantum ecosystem.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d8bb619ca6a0c0302691696dbe4d3839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::d8bb619ca6a0c0302691696dbe4d3839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Siemens (United Kingdom), HGF Limited, Nature Physics, BT Group (United Kingdom), University of Cambridge +45 partnersSiemens (United Kingdom),HGF Limited,Nature Physics,BT Group (United Kingdom),University of Cambridge,Microsoft (United States),Quantum Communications Hub (QComm),Quandela SAS,Bluefors Oy,Hitachi Cambridge Laboratory,Hitachi Cambridge Laboratory,HGF Limited,Quandela SAS,Networked Quantum Information Technology,Siemens PLC,Networked Quantum Information Technology,Hitachi Cambridge Laboratory,ZURICH INSTRUMENTS AG,Qioptiq Ltd,Qinetiq (United Kingdom),Nature Physics,UCL,Quantemol,BT Group (United Kingdom),Toshiba (United Kingdom),Rigetti & Co Inc,PhaseCraft Ltd.,Bluefors Oy,Rigetti & Co Inc,British Telecommunications plc,TREL,Microsoft (United States),Quantum Motion,SIEMENS PLC,River Lane Research,Keysight Technologies,Google (United States),PhaseCraft Ltd,Cambridge Quantum Computing Limited,Quantum Communications Hub (QComm),Keysight Technologies (United States),ZURICH INSTRUMENTS AG,SIEMENS PLC,Quantemol (United Kingdom),TREL,Riverlane,Cambridge Quantum Computing Limited,Google Inc,Quantum Motion,Qioptiq LtdFunder: UK Research and Innovation Project Code: EP/S021582/1Funder Contribution: 6,203,680 GBPFor many years, quantum mechanics has been a curiosity at the heart of physics. Its development was essential to many of the key breakthroughs of 20th century science, but it is famous for counter-intuitive features; the superposition illustrated by Schrödinger's cat; and the quantum entanglement responsible for Einstein's "spooky action at a distance". Quantum Technologies are based on the idea that the "weirdness" of quantum mechanics also presents a technological opportunity. Since quantum mechanical systems behave in a fundamentally different way to large-scale systems, if this behaviour could be controlled and exploited it could be utilised for fundamentally new technologies. Ideas for using quantum effects to enhancing computation, cryptography and sensing emerged in the 1980s, but the level of technology required to exploit them was out of reach. Quantum effects were only observed in systems at either very tiny scales (at the level of atoms and molecules) or very cold temperatures (a fraction of a degree above absolute zero). Many of the key quantum mechanical effects predicted many years ago were only confirmed in the laboratory in the 21st century. For example, a decisive demonstration of Einstein's spooky action at a distance was first achieved in 2015. With such rapid experimental progress in the last decade, we have reached a turning point, and quantum effects previously confined to university laboratories are now being demonstrated in commercially fabricated chips and devices. Quantum Technologies could have a profound impact on our economy and society; Quantum computers that can perform computations beyond the capabilities of the most powerful supercomputer; microscopic sensing devices with unprecedented sensitivity; communications whose security is guaranteed by the laws of physics. These technologies could be hugely transformative, with potential impacts in health-care, finance, defence, aerospace, energy and transport. While the past 30 years of quantum technology research have been largely confined to universities, the delivery of practical quantum technologies over the next 5-10 years will be defined by achievements in industrial labs and industry-academic partnerships. For this industry to develop, it will be essential that there is a workforce who can lead it. This workforce requires skills that no previous industry has utilised, combining a deep understanding of the quantum physics underlying the technologies as well as the engineering, computer science and transferrable skills to exploit them. The aim of our Centre for Doctoral Training is to train the leaders of this new industry. They will be taught advanced technical topics in physics, engineering, and computer science, alongside essential broader skills in communication and entrepreneurship. They will undertake world-class original research leading to a PhD. Throughout their studies they will be trained by, and collaborate with a network of partner organisations including world-leading companies and important national government laboratories. The graduates of our Centre for Doctoral Training will be quantum technologists, helping to create and develop this potentially revolutionary 21st-century industry in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0fecc36b09872a136add4ac539b70ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0fecc36b09872a136add4ac539b70ca&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu