Powered by OpenAIRE graph
Found an issue? Give us feedback

PNO INNOVATION SL

Country: Spain

PNO INNOVATION SL

24 Projects, page 1 of 5
  • Funder: European Commission Project Code: 820783
    Overall Budget: 8,442,000 EURFunder Contribution: 7,058,010 EUR

    The DESTINY project aims to realize a functional, green and energy saving, scalable and replicable solution, employing microwave energy for continuous material processing in energy intensive industries. The target is to develop and demonstrate a new concept of firing granular feedstock for materials transformation using full microwave heating as alternative and complement to the existing conventional production. The DESTINY system is conceived as cellular kilns in mobile modular plant, with significant advantages in terms of resource and energy efficiency, flexibility, replicability and scalability with reduced environmental footprint. The DESTINY concept will be proved in two demo sites located in Spain and Germany, covering high energy demanding sectors of strategic interest as Ceramic (Pigments), Cement (Calcined clay) and Steel (Sinter, Iron Pellets/DRI, ZnO), to validate the critical parameters of the developed technology in relevant environment (TRL 6). It will be implemented 2 feeding modules per demo site and 1 mobile microwave kiln module and product treatment. Influence of the DESTINY solutions in terms of stability, process efficiency and characteristics of raw materials, intermediate/sub/final products will be investigated to improve performance of the industrial processes addressed and guarantee the required quality of products. Numerical simulation tools will be used to drive the design and support the testing activities The industrialization and sustainability of DESTINY high temperature microwave technology will be assessed through the evaluation of relevant KPIs, with Life Cycle Methodologies. With the final aim of ensuring a large exploitation and market penetration for DESTINY, technology-based solutions business model, economic viability and replicability analysis will be conducted. For guaranteeing industrial transferability appropriate exploitation and dissemination activities have been defined during and even after the end of the project.

    more_vert
  • Funder: European Commission Project Code: 101070690
    Overall Budget: 2,619,810 EURFunder Contribution: 2,619,810 EUR

    In PHOENIX, we create the next generation of compact photonic integrated circuits (PIC) offering a continuous and efficient control over optical signals. A barium titanate (BTO) on silicon nitride (SiN) platform will be optimized to enable novel functionalities and produce enhanced PICs. The novel functionalities stem from a combination of materials having a metal-insulator transition with epitaxial ferroelectrics. Vanadium oxides (VOx) deliver a maximum contrast in absorption while Barium Titanate (BTO) offers an efficient and programmable control of the phase of an optical signal through Pockels and photorefractive effects. The developed technologies will be demonstrated in four uses cases in high-impact emerging applications: 1) fully homomorphic encryption, 2) 5G infrastructure, 3) inference of deep neural networks and 4) training of deep neural networks. The project has four main objectives: a) to provide novel photonic technologies with enhanced functionalities thanks to the integration of VOx and BTO, b) to provide a BTO/SiN waveguide platform for subsequent manufacturing of PICs and an upgraded version of such a platform integrating VOx with the potential to improve their performance and scalability, c) to build up the demonstrators, and d) to advance in the understanding, realization and upscaling of high-quality oxide thin-films by molecular beam epitaxy (MBE) on large area. The validation of the developed technology will be completed with an extrapolation to benchmark against representative existing systems and a roadmap for photonic-electronic integration. The project will perform a market analysis and a techno-economic evaluation in order to define business models and exploitation plans that ensure the sustainability of the PHOENIX platform to reduce innovation-to market-time and R&I costs for disruptive high-tech SMEs and maximize the impact of the 4 user cases demonstrators

    more_vert
  • Funder: European Commission Project Code: 101138261
    Overall Budget: 4,981,710 EURFunder Contribution: 4,981,710 EUR

    FOREMAST R&I activities are structured along 4 ambition Pillars: (P1) Selectable level of automation Guidance, Navigation and Control (GNC) architecture and interfaces and situational awareness model for interfacing GNC and sensory hardware and processing systems to efficiently solve the control problem unique to IWT. Combined with balanced human-autonomy collaboration (navigation, mooring, cargo handling, propulsion) and safety implications in mixed traffic utilising tailored Galileo/EGNOS services will lead to a Next-generation Remote Control Centre TRL 5 and Small Flexible Automated Zero-emission (SFAZ) autonomy control system TRL 5 protypes. (P2) Zero emission energy management solutions dynamically optimised for prevailing operating conditions. Hybrid Electric and Fuel Cell zero emission solutions will be evaluated against power and energy requirements, lifetime, costs and life-cycle emissions of alternative fuel/energy systems. (P3) Innovative Macro Designs for SFAZ vessels in intramodal & intermodal transport networks reflecting innovations from P1 and P2. Vessel design concepts, verified through simulation, will provide systematic evaluation of SFAZ designs for confined areas and shallow waters, providing an increased operational flexibility in terms of cargo capacity, types, and load units, tied with hydrodynamic and propulsion models and control architectures. (P4) A modelling simulation design and operational optimisation tools (Digital Twining Platform) enables both design and operational measurement and optimisation of Living Lab (LL) solutions, supporting solutions for European coastal and inland or congested urban regions, incorporating if needed third party innovative components, ensuring transferability and sustainability. 2 LLs in Ghent and Caen, that represent coastal and inland congested urban regions, will demonstrate the SFAZ Prototypes integrated through Automated Smart Terminals in optimised logistic networks. A 3rd virtual LL in Galati will demonstrate replicability.

    more_vert
  • Funder: European Commission Project Code: 101182299
    Overall Budget: 5,022,920 EURFunder Contribution: 5,022,920 EUR

    The global food system, responsible for up to 37% of GHG emissions, requires urgent transformation due to challenges from urbanisation and unsustainable diets. Additionally, climate change and biodiversity loss exacerbate the vulnerability of European food systems, as seen in recent climate-related disasters like wildfires and droughts, compounded by disruptions such as the COVID-19 pandemic. Despite food abundance in Europe, food insecurity threatens millions of European citizens, necessitating a comprehensive approach encompassing knowledge, technologies, behaviours, and policies that promote healthier and more sustainable food systems. Given citizen science (CS) as a potent tool for achieving these goals, SPOON takes the innovative approach to food insecurity by employing CS to empower citizens in creating a more inclusive and sustainable food environment. SPOON’s four main aims are to: deepen scientific knowledge about food environments; increase capacity of policymakers in data-driven decision-making; foster cross-sector collaboration; increase agency of citizens to change their food consumption behaviour and local food environments; and foster more confidence in citizens in sharing personal food data. SPOON bridges the intention-action gap towards healthier and more sustainable diets by placing citizens at the forefront of transforming the food system through CS integration. SPOON's conceptual framework centres around six CS Labs in Europe, coordinated by local partners and utilising a multi-actor approach. Citizens engage as both researchers and subjects, testing and validating innovative digital tools to collect, analyse and interpret data on their food consumption behaviors and local food environments to then co-design and run small-scale behaviour change interventions together with other stakeholders. SPOON prioritises GDPR compliance and FAIR principles in its data management.

    more_vert
  • Funder: European Commission Project Code: 760801
    Overall Budget: 7,293,910 EURFunder Contribution: 7,293,910 EUR

    A huge percentage of the recent European cultural heritage (CH) can be found in movies, photographies, posters and slides produced between 1895 and 1970 were made using cellulose derivates. More than 75 years of visual and audio memories are in serious danger to be lost due to the natural instability cellulose acetate (CA) and Cellulose nitrate (CN) materials. These physical media have helped to preserve the cultural material that is a real witness of socio-cultural European evolution in the recent era. It encompasses the possibility to understand the development of new arts such as cinema, photography or graphic arts and also the preservation of the socio-cultural memories of citizens located in major and local museums worldwide. Conservators consider two approaches when planning treatments to extend the useful lifetime of cultural materials: preventive or passive and active or interventive. But in case of cellulose derivates and other components of the movie or photos, once initiated, degradation cannot be prevented, reversed or stopped, but only inhibited or slowed. Inhibitive conservation of cellulose derivates can either involve the removal or reduction of factors causing degradation including light, oxygen, acids, fungus and relative humidity among others, as well as cost-sensitive processes such as freeze. NEMOSINE improves the traditional storage solutions, such as freeze storage (below 5ºC), by developing an innovative package with the main goal of energy saving and extent conservation time. NEMOSINE will develop: i) High O2 barrier and Active packaging using non-odour additives, ii) Active acid adsorbers based on functionalized Metal Organic Framework (MOFs) integrated in innovative structures, iii) Gas detection sensors to monitoring AA, O2 & NO, iv) Multi-scale modelling to correlate degradation & sensors signals, v)Packaging with modular design to fulfil the technical & economical requirements of the different CH made by cellulose derivates.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.