Powered by OpenAIRE graph
Found an issue? Give us feedback

New and Renewable Energy Centre NaREC

New and Renewable Energy Centre NaREC

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/H040331/1
    Funder Contribution: 2,417,460 GBP

    Definition of the performance of photovoltaics is normally reduced to the efficiency alone. However, this number contains no indication of key issues such as system component reliability, module stability or appropriate balance of system design -- all of which play a crucial role in determining the performance in terms of usability. The key indicator is the levelised cost of energy (LCOE). The main influences on this, and thus the viability of photovoltaic technologies, are not only in material science but also in the way systems behave in the long term, and the uncertainty in predicting their behaviour. The link between laboratory-based materials science and the LCOE is poorly understood, revealing gaps in scientific knowledge which will be filled by this project. The key outcome is improved understanding of the potential for deploying photovoltaics in different climatic zones. The biggest unknowns in the LCOE are: understanding of the stability and long-term performance of photovoltaic modules; how a holistic system performance can be described; and the uncertainty in life-time energy yield prediction. This is crucial, especially for newer thin film technologies, which have been shown to be more variable in degradation and often suffer inappropriate balance of system components. Close collaboration with manufacturers of thin film as well as crystalline silicon devices will ensure that these aspects are appropriately covered. Novel measurement and modelling approaches for the prediction of life-time energy yield of the modules will be developed and validated against realistic data in collected in different climatic zones. This will result in the development of accelerated test procedures. Uncertainty calculations will enable identification and minimisation of this, and thus reduce the LCOE. A holistic systems approach is taken, specifically looking at the effects of different inverters in different climates and the effects of the existing network infrastructure on energy performance. At the heart of this project is the development of models and their validation, all focused on predicting the lifetime energy yield. A measurement campaign will be undertaken using novel techniques to better monitor the long-term behaviour of modules. Detailed, spatially-resolved techniques will be developed and linked to finite element-based models. This then allows the development of improved accelerated tests to be linked to real environments. These models will be validated against modules measured in a variety of realistic deployments. Using a geographical information system, maps of environmental strains and expected degradation rates per year for the different technologies will be developed.The feedback from the grid is an often underestimated effect on photovoltaic system performance. Typically, the grid and power conditioning cause 5-10% losses in otherwise appropriately installed systems; in unfortunate cases this can rise to 60%. The underlying reasons need to be better understood, so specific models for the interaction with the grid and different control strategies will be developed with the overall aim to minimise these loss effects.This project will be crucial for both the UK and India to translate their ambitious installation plans into reality as it will deliver the tools required to plan the viability of installations via geographical information systems, underpinned by a robust science base. This will aid decisions on the use of appropriate photovoltaic technology for a given site, to include both the modules themselves and other system components, to maximise cost-effectiveness and reliability.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L014106/1
    Funder Contribution: 2,967,190 GBP

    The EU has a binding target of 20% of energy to come from renewables by 2020, with an associated CO2 emissions reduction target of 20% (relative to 1990) and a 20% reduction on energy usage by the same date. This is the so-called 20/20/20 target. The UK's target is for 15% of energy to be sourced from renewables by this date. For this target to be met, over 30% of electricity will need to be generated from renewables and it is anticipated that 31GW of this will come from wind power with 13GW onshore and 18GW offshore by 2020 to 40GW of offshore wind power capacity could be installed by 2030. At present 6GW of wind power have been installed onshore and 3GW offshore. Because of environmental concerns, the development of onshore wind power in the UK is being constrained making the cost-effective and reliable offshore development ever more important. To increase offshore capacity by at least a factor of five in seven years, whilst minimising the cost of energy, presents very significant design, operational and logistical challenges. Within the above context and in the longer term, wind farms and wind turbines will be sited further offshore in deeper water and become bigger. The proposed Supergen Wind Hub brings together leading wind energy academic research groups in UK to address the medium term challenges of scaling up to multiple wind farms, considering how to better build, operate and maintain multi-GW arrays of wind turbines whilst providing a reliable source of electricity whose characteristics can be effectively integrated into a modern power system such as that in the UK. The wind resource over both short and long terms, the interaction of wakes within a wind farm and the turbine loads and their impact on reliability will all need to be better understood. The layout of the farms, including foundations, impact on radar and power systems and shore-connection issues, will need to be optimised. The most effective and efficient operation of wind farms will require them to act as virtual conventional power plants flexibly responding to the current conditions, the wind turbines' state and operational demands and grid-integration requirements. The programme of research for the Supergen Wind Energy Hub will focus on all of the above, both at the level of single farms and of clusters of farms.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/H018662/1
    Funder Contribution: 4,834,190 GBP

    The Mission of Supergen Wind 2'To undertake research to achieve an integrated, cost-effective, reliable & available Offshore Wind Power Station.'This will be done under the four objectives:Reliability.Resource estimation.Scaling up of turbine sizes.Lifetime costs.The project will have two parallel Initiating Themes during the first two years. The first to deal with research into the physics and engineering of the offshore wind farm. The second to look more specifically at the wind turbine, building upon the lessons of Supergen Wind 1. In the third and fourth years of the project, the results of these two Themes will feed into a third Gathering Theme, which will consider the wind farm as a power station looking at how the power station should be designed, operated and maintained for optimum reliability and what the overall economics will be.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.