
Mouchel Group
Mouchel Group
12 Projects, page 1 of 3
assignment_turned_in Project2006 - 2011Partners:Mace Ltd, Xaar Americas Inc, TATA Motors Engineering Technical Centre, 3T RPD Ltd, Olivetti I-Jet +376 partnersMace Ltd,Xaar Americas Inc,TATA Motors Engineering Technical Centre,3T RPD Ltd,Olivetti I-Jet,SODA Project,Krause Automation,Motor Insurance Repair Research Centre,Ricardo UK,3D Systems Inc,Rolls-Royce Plc (UK),Hapold Consulting Ltd,Tesco,Bafbox Ltd,NCAR,Charnwood Borough Council,ArvinMeritor Automotive Light Vehicle,Autoliv Ltd,StubbsRich Ltd,Rim-Cast,SIEMENS PLC,CMP Batteries Ltd,Rozone Limited,Jaguar Cars,ManuBuild,Bafbox Ltd,National Physical Laboratory NPL,IPLON GMBH - THE INFRANET COMPANY,BT Group Property,Inst for Surface and Boundary Layers,Charnwood Borough Council,SODA Project,Boeing Co,Marylebone Cricket Club,AMEC,Huntleigh Healthcare Ltd,Delcam International plc,Terraplana,UK Sport,ITESM,Georgia Institute of Technology,Head Sport AG,TRW Conekt,Marden Edwards Ltd,Steel Construction Institute,Autoliv Ltd,Mouchel Parkman,EMDA,InfoVision Systems Ltd.,Ontology Works Inc,Exide Technologies,Collins and Aikman Ltd,Leicester Glenfield Hospital,Rozone Limited,Textile Recycling Association,BPB plc,John Laing Plc,Development Securities Plc,Giddings and Lewis INC,Collins and Aikman Ltd,Licensing Executive Society Intl LESI,TNO Industrial Technology,Schneider Electric (Germany),Laser Optical Engineering Ltd,Scott Wilson Ltd,Wates Construction,Fully Distributed Systems (United Kingdom),TRW Conekt,ThyssenKrupp Krause GmbH,BRE Group (Building Res Establishment),GlaxoSmithKline (Harlow),3T Additive Manufacturing Ltd,Hopkinson Computing Ltd,Econolyst Ltd,Lend Lease,Marylebone Cricket Club,Aptiv (United Kingdom),TNO Industrial Technology,Toyota Motor Europe,NPL,Novel Technical Solutions,BAE Systems,Leicestershire County Cricket Club,FORD MOTOR COMPANY LIMITED,Motor Industry Research Assoc. (MIRA),BT Group Property,Shepherd Construction Ltd,Capita,GSK,Bae Systems Defence Ltd,Cross-Hueller Ltd,CWV Group Ltd,In2Connect Ltd,Engage GKN,Datalink Electronics,Penn State University College of Medicin,Goodrich Actuation Systems,Siemens PLMS Ltd,Dept for Env Food & Rural Affairs DEFRA,LOE,Lawrence M Barry & Co,Birmingham City Council,Nike,The European Recycling Company,British Gypsum Ltd,Arup Group,John Laing Plc,Siemens Transportation,Boeing Co,Lenze UK Ltd.,Renishaw plc (UK),North West Aerospace Alliance,STI,Ove Arup & Partners Ltd,Regentec Limited,Let's Face It,Huntsman Advanced Materials UK Ltd,National Centre for Atmospheric Research,The European Recycling Company,Capita Symonds,Delphi Diesel Systems Ltd,B H R Group Ltd,Mace Ltd,Buro Happold,Leicestershire County Cricket Club,Pentland Group plc,Rover Group Ltd,ArvinMeritor Automotive Light Vehicle,CSC (UK) Ltd,GlaxoSmithKline PLC,AMEC,BT Group,Capita Symonds,Fergusons Irish Linen & Co.Ltd,Diameter Ltd,Clarks,Edwards,Invotec Group LTD,3D Systems Inc,CSC (UK) Ltd,Ordnance Survey,Z Corporation,In2Connect Ltd,Lamb Technicon UK,TAP Biosystems,Shotcrete,Schneider Electric (France),Reid Architecture,Engage GKN,Beta Technology Limited,adidas-Salomon AG,Bosch Rexroth Corporation,InfoVision Systems Ltd.,MG Rover Group Ltd,Singapore Institute of Mfg Technology,Huntsman (United Kingdom),Qioptiq Ltd,RENISHAW,Clarks,Simons Design,World Taekwondo Federation,CIRIA,Penn State University,Sulzer Chemtech (UK) Ltd,GAS-UK,Loughborough University,PIRA,Clamonta Ltd,Laser Optical Engineering,Real-Time Innovations,Bovis Lend Lease,Helm X,NTU,Emergent Systems,TRA,Parker Hannifin Plc,Faber Maunsell,Dunlop Slazenger,Rojac Patterns Ltd,DEGW,Delphi Diesel Systems,Toyota Motor Europe NV SA,Rim-Cast,Buildoffsite,Reid Architecture,Rexroth Bosch Group,GE Aviation,Schneider Electric GmbH,S M M T,Putzmeister UK,AECOM,Mott Macdonald (United Kingdom),Ford Motor Company,Smithers Pira,BIRMINGHAM CITY COUNCIL,SCI,Ontology Works Inc,Monterrey Institute of Technology,SMRE,URS/Scott Wilson,Coventry University,Zytek Group Ltd,Webster Components Ltd,Interserve Project Services Ltd,Mott Macdonald UK Ltd,University of Nottingham,East Midlands Development Agency,ThyssenKrupp Krause GmbH,VTT ,Krause Automation,Datalink Electronics,TME,RTI,National Cricket Centre,The DEWJOC Partnership,MCP Equipment,Ford Motor Company,Sulzer Chemtech (UK) Ltd,VTT Technical Research Centre of Finland,Econolyst Ltd,BAE Systems (Sweden),Solidica Corp,Delcam International plc,Putzmeister UK,Lawrence M Barry & Co,Knibb Gormezano & Partners,Nottingham University Hospitals Charity,Fergusons Irish Linen & Co.Ltd,adidas Group (International),Nike,British Telecom,OS,National Ctr for Atmospheric Res (NCAR),Pentland Group plc,MCP Equipment,National Cricket Centre,Hopkinson Computing Ltd,Z Corporation,Interserve Project Services Ltd,Tesco,Critical Pharmaceuticals,Terrapin Ltd,TAP Biosystems,Simons Design,Rolls-Royce (United Kingdom),Delcam (United Kingdom),Mechan Ltd,World Taekwondo Federation,New Balance Athletic Shoes,Fraunhofer -Institut für Grenzflächen-,JAGUAR LAND ROVER LIMITED,Xaar Americas Inc,CIRIA,EMCBE and CE,Zytek Group Ltd,RFE International Ltd,JCB Research Ltd,EOS,Dunlop Slazenger,Saint-Gobain Weber Ltd,MIRA Ltd,Invotec Circuits,Parker Hannifin Plc,Environment Agency,Aptiv (Ireland),Prior 2 Lever,UK Sport,Nottingham Uni Hospitals NHS Trust,CWV Group Ltd,BAE Systems (United Kingdom),Building Research Establishment (BRE),Exide Technologies (United Kingdom),Highbury Ltd,CRITICAL PHARMACEUTICALS,Novel Technical Solutions,Giddings and Lewis INC,Lenze UK Ltd.,University Hospitals of Leicester NHS Trust,Soletec Ltd,SAIC,CSW Group,JCB Research Ltd (to be replaced),M I Engineering Ltd,USC,AMTRI,Health and Safety Executive (HSE),Surface Technology International Ltd,EMCBE and CE,Singapore Institute of Manufacturing Tec,Buro Happold Limited,HEAD Sport GmbH,University of Southern California,URS Corporation (United Kingdom),Buildoffsite,Mechan Ltd,Smmt Industry Forum,Fully Distributed Systems Ltd,Clamonta Ltd,Rojac Patterns Ltd,Arup Group Ltd,AMTRI,Mowlem Plc,Smmt Industry Forum,StubbsRich Ltd,Solidica Corp,DEGW,TLON GmbH - The Infranet Company,BT Group,Boeing (International),DEFRA Environment Agency,British Gypsum Ltd,Beta Technology Ltd,Birmingham City Council,Edwards,Rohm and Haas Electronic Materials Ltd,Mouchel Parkman,Siemens Transportation,Mouchel Group,Terrapin Ltd,Terraplana,Nottingham University Hospitals Trust,London Borough of Bromley Council,Galorath Affiliates Ltd,VTT Technical Research Centre of Finland,Galorath Affiliates Ltd,Mowlem Plc,Coventry University,Health and Safety Executive,Huntsman Advanced Materials UK Ltd,Huntleigh Healthcare Ltd,Development Securities Plc,PSU,Prior 2 Lever,Henkel Loctite Adhesives Ltd,Locate Bio (United Kingdom),Shepherd Construction Ltd,Motor Insurance Repair Research Centre,TRW Automotive Technical Centre,Faber Maunsell,SAIC,Webster Components Ltd,Loughborough University,CSW Group,Saint-Gobain Weber Ltd,ME Engineering Ltd,Helm X,New Balance Athletic Shoes,Jaguar Cars,S M M T,Henkel Loctite Adhesives Ltd,The DEWJOC Partnership,London Borough of Camden,RFE International Ltd,GT,Emergent Systems,North West Aerospace Alliance,GE (General Electric Company) UK,Lamb Technicon UK,Hapold Consulting Ltd,Next Plc,Olivetti I-Jet SpA,L S C Group Ltd,ManuBuild,BPB plc,Knibb Gormezano & Partners,QinetiQ,Bosch Rexroth Corporation,Next Plc,SIT,Manchester City Football Club,TRW Automotive Technical Centre,MIRA LTD,Rohm and Haas Electronic Materials Ltd,École Centrale de Lille,Cross-Hueller Ltd,Rolls-Royce (United Kingdom),Let's Face It,Manchester City Football Club,EOS GmbH - Electro Optical Systems,Shotcrete,SOLARTECH LTDFunder: UK Research and Innovation Project Code: EP/E002323/1Funder Contribution: 17,848,800 GBPThe Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.
more_vert assignment_turned_in Project2010 - 2013Partners:Yorkshire Water Services Ltd, DEFRA, Halcrow Group Ltd, UNIVERSITY OF EXETER, Halcrow Group Limited +31 partnersYorkshire Water Services Ltd,DEFRA,Halcrow Group Ltd,UNIVERSITY OF EXETER,Halcrow Group Limited,Thames Water (United Kingdom),UK Water Industry Research Ltd (UKWIR),Torbay Council,NWL,Wallingford Software,Wallingford Software,Thames Water Utilities Limited,University of Exeter,Mouchel Group,UKWIR,MWH UK Ltd,EA,ENVIRONMENT AGENCY,Mouchel Group,United Utilities (United Kingdom),Yorkshire Water,Richard Allitt Associates Ltd,H R Wallingford Ltd,City of Bradford Metropolitan Dist Counc,MWH UK Ltd,BRADFORD METROPOLITAN DISTRICT COUNCIL,United Utilities,RAA,United Utilities Water Ltd,University of Exeter,Torbay Council,Kelda Group (United Kingdom),Environment Agency,H R Wallingford Ltd,Bradford Metropolitan District Council,Northumbrian Water Group plcFunder: UK Research and Innovation Project Code: EP/H015736/1Funder Contribution: 424,862 GBPFlooding is a major problem in the UK as recent high profile events in the summers of 2006 and 2007 have shown. In these events the damage to property and belongings ran into billions of pounds and a number of people were injured or lost their lives in these events. Therefore, predicting the location and severity of flooding is extremely important in preventing these losses. Current computer models for predicting flooding are highly accurate, but take a very long time to run even on the fastest computers. This project intends to use a technique known as cellular automata, a model based on the localised interactions of small cells, to simulate flooding in such a way that it will be possible to run complicated scenarios on a standard PC. The new approach will gain efficiency by making use of the fact that each cell can only 'see' the cells closest to it and the project will investigate the best ways of allowing each cell to communicate with its neighbours. The approach will be tested over a number of different flooding scenarios and compared with existing methodologies to demonstrate its accuracy and increased efficiency over standard methods.
more_vert assignment_turned_in Project2009 - 2012Partners:Mouchel Parkman, UCL, Mouchel Parkman, Mouchel GroupMouchel Parkman,UCL,Mouchel Parkman,Mouchel GroupFunder: UK Research and Innovation Project Code: EP/G011680/1Funder Contribution: 198,128 GBPSummarySlope failures related to pore-water dissipation, stress relaxation and desiccation cracks are major problems occurring in our ageing road network. Consequently, the remediation works necessary to correct these problems are known to cause congestion and delays that, in turn, cause financial loss. In order to decrease the recurrent time of maintenance work, Mouchel is running a pilot test using fibres mixed and compacted with natural soil to remediate a small failure occurred in an embankment south of the M25. Research in micro-reinforced soils is still in its infancy and, although laboratory research has shown that the addition of micro-reinforcement improves the strength properties of the composite material significantly, very little is known about their behaviour in situ, or of the effects of the field techniques currently in use to mix and compact the fibres, on their performance. This project, suported by Mouchel and the Highways Agency, is to study the effects of the field techniques in the performance of the composite material, originated from the mixture of clays with polymer tape fibres.The research will focus on the effects of compacting heavily overconsolidated peds (lumps) of clay on the fibre orientation and distribution within the embankment. A few samples of the in-situ compacted material, porvided by Mouchel, and samples prepared in the laboratory, will be dissected, and the results used as a basis to understand the orientation and distribution of fibres. Swelling and triaxial tests will be carried out on large diameter samples; the results will be used to understand and provide good quality data of the mechanical properties of the compacted reinforced and non-reinforced soil. The test results, together with the pilot study run by Mouchel, will provide the data to analyse the performance of the new material and their use in the maintenance of existing slopes along the highway network in UK. The outcome is expected to provide a better understanding of the effects of discrete fibre reinforcement on heavily overconsolidated clays and the effects of in-situ mixing and compaction techniques in the response of the composite soil. This will allow effective guidance in the construction and/or remediation of slope failures and widespread the use of this type of reinforcement as an effective way to reduce maintenance works on embankments. Improvement of soil characteristics using micro-reinforcement can also lead to a more sustainable way of using otherwise unsuitable soils instead of disposing of them
more_vert assignment_turned_in Project2017 - 2020Partners:MET OFFICE, Virtalis Ltd, Mouchel Group, Bristol Water Plc, AECOM +16 partnersMET OFFICE,Virtalis Ltd,Mouchel Group,Bristol Water Plc,AECOM,UK Aecom,BHR Group,Met Office,XP Software Solutions Ltd,Bristol Water Plc,SWW,University of Exeter,Skipworth Engelhardt Ass.Man.Sys. SEAMS,UNIVERSITY OF EXETER,XP Software Solutions Ltd,Mouchel Group,South West Water Limited,Met Office,University of Exeter,AECOM Limited (UK),Skipworth Engelhardt Ass.Man.Sys. SEAMSFunder: UK Research and Innovation Project Code: EP/P009441/1Funder Contribution: 708,893 GBPIt is widely acknowledged that the water and wastewater infrastructure assets, which communities rely upon for health, economy and environmental sustainability, are severely underfunded on a global scale. For example, a funding gap of nearly $55 billion has been identified by the US EPA (ASCE, 2011). In England and Wales, the total estimated capital value of water utility assets is £254.8 billion (Ofwat, 2015), but between 2010 and 2015 only £12.9 billion was allocated for maintaining and replacing assets. Combined with the drive to reduce customers' bills, there will be even more pressure on water companies to find ways to bridge the gap between the available and required finances. As a result of this it is not surprising that optimisation methods have been extensively researched and applied in this area (Maier et al., 2014). The inability of those methods to include into optimisation 'unquantifiable' or difficult to quantify, yet important considerations, such as user subjective domain knowledge, has contributed to the limited adoption of optimisation in the water industry. Many cognitive and computational challenges accompany the design, planning and management involving complex engineered systems. Water industry infrastructure assets (i.e., water distribution and wastewater networks) are examples of systems that pose severe difficulties to completely automated optimisation methods due to their size, conceptual and computational complexity, non-linear behaviour and often discrete/combinatorial nature. These difficulties have first been articulated by Goulter (1992), who primarily attributed the lack of application of optimisation in water distribution network (WDN) design to the absence of suitable professional software. Although such software is now widely available (e.g., InfoWorks, WaterGems, EPANET, etc.), the lack of user under-standing of capabilities, assumptions and limitations still restricts the use of optimisation by practicing engineers (Walski, 2001). Automatic methods that require a purely quantitative mathematical representation do not leverage human expertise and can only find solutions that are optimal with regard to an invariably over-simplified problem formulation. The focus of the past research in this area has almost exclusively been on algorithmic issues. However, this approach neglects many important human-computer interaction issues that must be addressed to provide practitioners with engineering-intuitive, practical solutions to optimisation problems. This project will develop new understanding of how engineering design, planning and management of complex water systems can be improved by creating a visual analytics optimisation approach that will integrate human expertise (through 'human in the loop' interactive optimisation), IT infrastructure (cloud/parallel computing) and state-of-the-art optimisation techniques to develop highly optimal, engineering intuitive solutions for the water industry. The new approach will be extensively tested on problems provided by the UK water industry and will involve practicing engineers and experts in this important problem domain.
more_vert assignment_turned_in Project2011 - 2018Partners:University of Bristol, Hexcel, BAE Systems (Sweden), DSTL, Defence Science & Tech Lab DSTL +16 partnersUniversity of Bristol,Hexcel,BAE Systems (Sweden),DSTL,Defence Science & Tech Lab DSTL,Halliburton Energy Services,Bae Systems Defence Ltd,University of Bristol,Rolls-Royce (United Kingdom),Mouchel,Rolls-Royce (United Kingdom),Rolls-Royce Plc (UK),Mouchel,BAE Systems,Mouchel Group,Vestas Blades (Tecnology) UK Ltd,BAE Systems (United Kingdom),Vestas (Denmark),DSTL Porton Down,Halliburton Energy Services,Hexcel Composites LtdFunder: UK Research and Innovation Project Code: EP/I02946X/1Funder Contribution: 6,416,780 GBPConventional composites such as carbon fibre reinforced plastics have outstanding mechanical properties: high strength and stiffness, low weight, and low susceptibility to fatigue and corrosion. Composites are truly the materials of the future, their properties can be tailored to particular applications and capabilities for sensing, changing shape or self healing can also be included. Their use is rising exponentially, continuing to replace or augment traditional materials. A key example is the construction of new large aircraft, such as the Boeing 787 and Airbus A350, mainly from carbon fibre composites. At the same time, there is rapid expansion of composite use in applications such as wind turbine blades, sporting goods and civil engineering infrastructure.Despite this progress, a fundamental and as yet unresolved limitation of current composites is their inherent brittleness. Failure is usually sudden and catastrophic, with little or no warning or capacity to carry load afterwards. A related problem is their susceptibility to impact damage, which can drastically reduce the strength, without any visible warning. Structures that look fine can fail suddenly at loads much lower than expected. As a result complex maintenance procedures are required and a significantly greater safety margin than for other materials. Our vision is to create a paradigm shift by realising a new generation of high performance composites that overcome the key limitation of conventional composites: their inherent lack of ductility. We will design, manufacture and evaluate a range of composite systems with the ability to fail gradually, undergoing large deformations whilst still carrying load. Energy will be absorbed by ductile or pseudo-ductile response, analogous to yielding in metals, with strength and stiffness maintained, and clear evidence of damage. This will eliminate the need for very low design strains to cater for barely visible impact damage, providing a step change in composite performance, as well as overcoming the intrinsic brittleness that is a major barrier to their wider adoption. These materials will provide greater reliability and safety, together with reduced design and maintenance requirements, and longer service life. True ductility will allow new manufacturing methods, such as press forming, that offer high volumes and greater flexibility.To achieve such an ambitious outcome will require a concerted effort to develop new composite constituents and exploit novel architectures. The programme will scope, prioritise, develop, and combine these approaches, to achieve High Performance Ductile Composite Technology (HiPerDuCT).
more_vert
chevron_left - 1
- 2
- 3
chevron_right