Powered by OpenAIRE graph
Found an issue? Give us feedback

Fugro GEOS Ltd

Fugro GEOS Ltd

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/M008525/1
    Funder Contribution: 412,525 GBP

    Severe weather, with heavy rainfall and strong winds, has been the cause of recent dramatic land and coastal flooding, and of strong beach and cliff erosion along the British coast. Both the winters of 2012-2013 and 2013-2014 have seen severe environmental disasters in the UK. The prediction of severe rainfall and storms and its use to forecast river flooding and storm surges, as well as coastal erosion, poses a significant challenge. Uncertainties in the prediction of where and how much precipitation will fall, how high storm surges will be and from which direction waves and wind will attack coast lines, lie at the heart of this challenge. This and other environmental challenges are exacerbated by changing climate and need to be addressed urgently. As the latest IPCC reports confirms, sea level rise and storm intensity combined are very likely to cause more coastal erosion of beaches and cliffs, and of estuaries. However, it is also clear that there remains considerable uncertainty. To address the challenges posed by the prediction and mitigation of severe environmental events, many scientific and technical issues need to be tackled. These share common elements: phenomena involving a wide range of spatial and temporal scales; interaction between continuous and discrete entities; need to move from deterministic to probabilistic prediction, and from prediction to control; characterisation and sampling of extreme events; merging of models with observations through filtering; model reduction and parameter estimation. They also share a dual need for improved mathematical models and for improved numerical methods adapted to high-performance computer architectures. Since all these aspects are underpinned by mathematics, it is clear that new mathematical methods can make a major contribution to addressing the challenges posed by severe events. To achieve this, it is crucial that mathematicians with the relevant expertise interact closely with environmental scientists and with end-users of environmental research. At present, the UK suffers from limited interactions of this type. We therefore propose to establish a new Network - Maths Foresees - that will forge strong ties between researchers in the applied mathematics community with researchers in selected strategic areas of the environmental science community and governmental agencies. The activities proposed to reach our objectives include: (i) three general assemblies, (ii) three mathematics-with-industry style workshops, in which the stakeholders put forward challenges, (iii) focussed workshops on mathematical issues, (iv) outreach projects in which the science developed is demonstrated in an accessible and conceptual way to the general public, (v) feasibility projects, and (vi) workshops for user groups to disseminate the network progress to government agencies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P033091/1
    Funder Contribution: 1,121,310 GBP

    Chalk is a highly variable soft rock that covers much of Northern Europe and is widespread under the North and Baltic Seas. It poses significant problems for the designers of large foundations for port, bridge and offshore wind turbine structures that have to sustain severe environmental loading over their many decades in service. Particular difficulties are faced when employing large driven steel piles to secure the structures in place. While driven pile foundation solutions have many potential advantages, chalk is highly sensitive to pile driving and to service loading conditions, such as the repeated cyclic buffeting applied to bridge, harbour and offshore structures by storm winds and wave impacts. Current guidance regarding how to allow for difficult pile driving conditions or predict the piles' vertical and lateral response to loads is notoriously unreliable in chalk. There is also no current industrial guidance regarding the potentially positive effects of time (after driving) on pile behaviour or the generally negative impact of the cyclic loading that the structures and their piled foundations will inevitably experience. These shortfalls in knowledge are introducing great uncertainty into the assessment and design of a range of projects around the UK and Northern Europe. Particularly affected are a series of planned and existing major offshore wind farm developments. The uncertainty regarding foundation design and performance poses a threat to the economic and safe harnessing of vital renewable, low carbon, offshore energy supplies. Better design guidelines will reduce offshore wind energy costs and also help harbour and transport projects to progress and function effectively, so delivering additional benefits to both individual consumers and UK Industry. The research proposed will generate new driven pile design guidance for chalk sites through a comprehensive programme of high quality field tests, involving multiple loading scenarios, on 21 specially instrumented driven tubular steel test piles, at an onshore test site in Kent. This will form a benchmark set of results that will be complemented by comprehensive advanced drilling, sampling, in-situ testing and laboratory experiments, supported by rigorous analysis and close analysis of other case history data. The key aim is to develop design procedures that overcome, for chalk, the current shortfalls in knowledge regarding pile driving, ageing, static and cyclic response under axial and lateral loading. The main deliverable will be new guidelines for practical design that will be suitable for both onshore and offshore applications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P009743/1
    Funder Contribution: 3,048,220 GBP

    This project will undertake the research necessary for the remote inspection and asset management of offshore wind farms and their connection to shore. This industry has the potential to be worth £2billion annually by 2025 in the UK alone according to studies for the Crown Estate. At present most Operation and Maintenance (O&M) is still undertaken manually onsite. Remote monitoring through advanced sensing, robotics, data-mining and physics-of-failure models therefore has significant potential to improve safety and reduce costs. Typically 80-90% of the cost of offshore O&M according to the Crown Estate is a function of accessibility during inspection - the need to get engineers and technicians to remote sites to evaluate a problem and decide what remedial action to undertake. Minimising the need for human intervention offshore is a key route to maximising the potential, and minimising the cost, for offshore low-carbon generation. This will also ensure potential problems are picked up early, when the intervention required is minimal, before major damage has occurred and when maintenance can be scheduled during a good weather window. As the Crown Estate has identified: "There is an increased focus on design for reliability and maintenance in the industry in general, but the reality is that there is a still a long way to go. Wind turbine, foundation and electrical elements of the project infrastructure would all benefit from innovative solutions which can demonstrably reduce O&M spending and downtime". Recent, more detailed, academic studies support this position. The wind farm is however an extremely complicated system-of-systems consisting of the wind turbines, the collection array and the connection to shore. This consists of electrical, mechanical, thermal and materials engineering systems and their complex interactions. Data needs to be extracted from each of these, assessed as to its significance and combined in models that give meaningful diagnostic and prognostic information. This needs to be achieved without overwhelming the user. Unfortunately, appropriate multi-physics sensing schemes and reliability models are a complex and developing field, and the required knowledge base is presently scattered across a variety of different UK universities and subject specialisms. This project will bring together and consolidate theoretical underpinning research from a variety of disparate prior research work, in different subject areas and at different universities. Advanced robotic monitoring and advanced sensing techniques will be integrated into diagnostic and prognostic schemes which will allow improved information to be streamed into multi-physics operational models for offshore windfarms. Life-time, reliability and physics of failure models will be adapted to provide a holistic view of wind-farms system health and include these new automated information flows. While aspects of the techniques required in this offshore application have been previously used in other fields, they are innovative for the complex problems and harsh environment in this offshore system-of-systems. 'Marinising' these methods is a substantial challenge in itself. The investigation of an integrated monitoring platform and the reformulation of models and techniques to allow synergistic use of data flow in an effective and efficient diagnostic and prognostic model is ambitious and would allow a major step change over present practice.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P020933/1
    Funder Contribution: 96,549 GBP

    The United Kingdom has rapidly ageing civil infrastructure. The ability to re-use deep foundation systems and construct new ones more efficiently will pave the way for considerable savings in financial and carbon resources. Geotechnical engineers frequently rely on past records and experience to design foundations. Foundation performance in the stiff deposits in the UK is difficult to estimate and is often reliant on preliminary pile tests to failure being available. If these tests are not available then very conservative design assumptions are used. This research project will provide the UK geotechnical community with an openly accessible database of pile load tests in UK soil deposits. Much of the data for the database will be sourced from the literature and consultants' records. Using the database, different models that can be used to predict pile settlement response will be compared statistically and re-calibrated. Estimates of 'reserve capacity' in UK foundation systems will also be made to search for insights into the potential for foundation re-use in future construction projects. The results of the analysis can also be used to derive improved partial factors for pile design. These can be used in new and updated codes of practice and design guides. A user friendly web-portal will be developed so that designers and researchers can rapidly access the underlying datasets in the database. This will allow others to calibrate their own models for pile behaviour.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W006235/1
    Funder Contribution: 1,203,430 GBP

    Geotechnical infrastructure fundamentally underpins the transport, energy and utility networks of our society. The design of this infrastructure faces increasing challenges related to construction in harsher or more complex environments and stricter operating conditions. Modern design approaches recognise that the strength and stiffness of ground, and therefore the safety and resilience of our infrastructure, changes through time under the exposure to in-service loading - whether from trains, traffic, waves, currents, seasonal moisture cycles, redevelopment of built structures or nearby construction in congested urban areas. However, advances in geotechnical analysis methods have not been matched by better tools to probe and test the ground in situ, in a way that represents realistic real-world loading conditions. This research will improve current geotechnical site investigation practice by developing ROBOCONE - a new site investigation tool for intelligent ground characterisation - and its interpretative theoretical framework - from data to design. ROBOCONE will combine modern technologies in robotic control and sensor miniaturisation with new theoretical analyses of soil-structure interaction. Breaking free from the kinematic constraints of conventional site investigation tools, ROBOCONE will feature three modular sections which can be remotely actuated and controlled to impose horizontal, vertical and torsional kinematic mechanisms in the ground closely mimicking loading and deformation histories experienced during the entire lifespan of a geotechnical infrastructure. The device development will be supported by new theoretical approaches to interpret ROBOCONE's data to provide objective and reliable geotechnical parameters, ready for use in the modern "whole-life" design of infrastructure. This research will provide a paradigm shift in equipment for in situ ground characterisation. ROBOCONE will enable the cost-effective and reliable characterisation of advanced soil properties and their changes with time directly in-situ, minimising the need for costly and time-consuming laboratory investigations, which are invariably affected by sampling and testing limitations. Geotechnical in-situ characterisation will be brought into step with modern, resilient and optimised geotechnical design approaches.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.