
Fraunhofer
Fraunhofer
24 Projects, page 1 of 5
assignment_turned_in Project2017 - 2020Partners:COST, European Cooperation in Science and Technology, FHG, Gold Standard Phantoms, UK Biobank +5 partnersCOST,European Cooperation in Science and Technology,FHG,Gold Standard Phantoms,UK Biobank,Fraunhofer,COST,University of Oxford,UK Biobank,Gold Standard PhantomsFunder: UK Research and Innovation Project Code: EP/P012361/1Funder Contribution: 836,435 GBPPerfusion imaging allows us to measure the vital role played by delivery of blood to the brain in keeping it supplied with nutrients and removal of waste. Any deviations of the blood supply from normal can be a sign of disease. In particular early and subtle changes in perfusion might mark regions of the brain which are affected by degenerative diseases such as dementia before other imaging signs become obvious. The technology exists and is increasingly widely available to image perfusion quickly and safely using Magnetic Resonance Imaging. Thus perfusion Magnetic Resonance Imaging could be a valuable tool in the understanding of dementias, as well as the diagnosis and monitoring of patients with dementia. The challenge that remains is making sufficiently specific measurements of subtle changes in blood supply that would be needed to make the technology truly useful for patients. This project addresses that problem in three ways: > Automated removal of errors associated with imperfect measurement, for example due to motion of the patient. > Methods to control for differences between patients due to their individual brain structure, allowing blood supply measurements to be compared between individuals or from a patient to a population of similar healthy adults. These methods remove uncertainties introduced by other differences between the brain's of individuals that are not related to perfusion. > Generation of personalised reference perfusion images for an individual patient against which their measured perfusion can be compared to detect changes specific to that individual. The methods and tools that are to be generated in this project will enable perfusion Magnetic Resonance Imaging to be used more effectively in the UK-wide effort to understand dementia and in the search for new and effective treatments. Ultimately the work done in this project will enable perfusion Magnetic Resonance Imaging to become a valuable clinical tool that can be used in the diagnosis and monitoring of individual patients with dementia.
more_vert assignment_turned_in Project2017 - 2023Partners:Cedar Audio Ltd, Supermassive Games, British Library, Bang & Olufsen (Denmark), BBC Television Centre/Wood Lane +27 partnersCedar Audio Ltd,Supermassive Games,British Library,Bang & Olufsen (Denmark),BBC Television Centre/Wood Lane,Audio Analytic Ltd (UK),Supermassive Games,Vicon,Fraunhofer,Google Inc,University of Surrey,The Foundry Visionmongers Ltd (UK),Imaginarium,FOUNDRY,Google Inc,Sony Broadcast and Professional Europe,British Library,Vicon,Sony (UK),Imaginarium,Bang & Olufsen,Audio Analytic Ltd,Cedar Audio Ltd,BBC,Imagineer Systems Ltd,DoubleMe,FHG,University of Surrey,BL,DoubleMe,Imagineer Systems Ltd,British Broadcasting Corporation - BBCFunder: UK Research and Innovation Project Code: EP/P022529/1Funder Contribution: 1,577,220 GBPThe strategic objective of this platform grant is to underpin Audio-Visual Media Research within the Centre for Vision, Speech and Signal Processing (CVSSP) to pursue fundamental research combining internationally leading expertise in understanding of real-world audio and visual data, and to transfer this capability to impact new application domains. Our goal is to pioneer new technologies which impact directly on industry practice in healthcare, sports, retail, communication, entertainment and training. This builds on CVSSP's unique track-record of world-leading research in both audio and visual machine perception which has enabled ground-breaking technology exploited by UK industry. The strategic contribution and international standing of the centres research in audio and visual media has been recognised by EPSRC through two previous platform grant awards (2003-14) and two programme grant awards in 2013 and 2015. Platform Grant funding is requested to reinforce the critical mass of expertise and knowledge of specialist facilities required to contribute advance in both fundamental understanding and pioneering new technology. In particular this Platform Grant will catalyse advances in multi-sensory machine perception building on the Centre's unique strengths in audio and vision. Key experienced post-doctoral researchers have specialist knowledge and practical know-how, which is an important resource for training new researchers and for maintaining cutting edge research using state-of-the-art facilities. Strategically the Platform Grant will build on recent independent advances in audio and visual scene analysis to lead multi-sensory understanding and modelling of real-world scenes. Research advances will provide the foundation for UK industry to lead the development of technologies ranging from intelligent sensing for healthcare and assisted living to immersive entertainment production. Platform Grant funding will also strengthen CVSSP's international collaboration with leading groups world-wide through extended research secondments US (Washington, USC), Asia (Tsinghua, Tianjin, Kyoto, Tokyo, KAUST) and Europe (INRIA, MPI, Fraunhofer, ETH, EPFL, KTH, CTU, UPF).
more_vert assignment_turned_in Project2013 - 2018Partners:Hewlett-Packard Ltd, Fraunhofer, Glen Dimplex Group, Northern Ireland Housing Executive, CIBSE +51 partnersHewlett-Packard Ltd,Fraunhofer,Glen Dimplex Group,Northern Ireland Housing Executive,CIBSE,Spirax sarco,CENTRICA PLC,Hubbard Products (United Kingdom),DECC,CSIRO,National Grid PLC,Centrica (United Kingdom),Polytechnic University of Milan,The Carbon Trust,E ON Central Networks plc,Institute of Refrigeration,HPLB,FHG,The Cooperative Group,Centrica Plc,J Sainsbury PLC,E.ON E&P UK Ltd,J SAINSBURY PLC,SPIRAX-SARCO LIMITED,Bond Retail Services Ltd,Department of Energy and Climate Change,LONDON UNDERGROUND LIMITED,Asda,4D (United Kingdom),Emerson Climate Technologies,4D Data Centres Ltd,Glen Dimplex Group,IOR,Sainsbury's (United Kingdom),Emerson Climate Technologies,Summitskills,University of Warwick,University of Warwick,Hubbard Products Limited,Asda,CSIRO,Design Council,Hewlett Packard Ltd,Powrmatic Ltd,Northern Ireland Hospice,The Cooperative Group,Powrmatic Ltd,Heat Pump Association,CIBSE,Department for Business, Energy and Industrial Strategy,Heat Pump Association,Carbon Trust,Bond Retail Services Ltd,Design Council,Summitskills,National Grid plcFunder: UK Research and Innovation Project Code: EP/K011847/1Funder Contribution: 5,213,690 GBPThe UK is committed to a target of reducing greenhouse gas emissions by 80% before 2050. With over 40% of fossil fuels used for low temperature heating and 16% of electricity used for cooling these are key areas that must be addressed. The vision of our interdisciplinary centre is to develop a portfolio of technologies that will deliver heat and cold cost-effectively and with such high efficiency as to enable the target to be met, and to create well planned and robust Business, Infrastructure and Technology Roadmaps to implementation. Features of our approach to meeting the challenge are: a) Integration of economic, behavioural, policy and capability/skills factors together with the science/technology research to produce solutions that are technically excellent, compatible with and appealing to business, end-users, manufacturers and installers. b) Managing our research efforts in Delivery Temperature Work Packages (DTWPs) (freezing/cooling, space heating, process heat) so that exemplar study solutions will be applicable in more than one sector (e.g. Commercial/Residential, Commercial/Industrial). c) The sub-tasks (projects) of the DTWPs will be assigned to distinct phases: 1st Wave technologies or products will become operational in a 5-10 year timescale, 2nd Wave ideas and concepts for application in the longer term and an important part of the 2050 energy landscape. 1st Wave projects will lead to a demonstration or field trial with an end user and 2nd Wave projects will lead to a proof-of-concept (PoC) assessment. d) Being market and emission-target driven, research will focus on needs and high volume markets that offer large emission reduction potential to maximise impact. Phase 1 (near term) activities must promise high impact in terms of CO2 emissions reduction and technologies that have short turnaround times/high rates of churn will be prioritised. e) A major dissemination network that engages with core industry stakeholders, end users, contractors and SMEs in regular workshops and also works towards a Skills Capability Development Programme to identify the new skills needed by the installers and operators of the future. The SIRACH (Sustainable Innovation in Refrigeration Air Conditioning and Heating) Network will operate at national and international levels to maximise impact and findings will be included in teaching material aimed at the development of tomorrow's engineering professionals. f) To allow the balance and timing of projects to evolve as results are delivered/analysed and to maximise overall value for money and impact of the centre only 50% of requested resources are earmarked in advance. g) Each DTWP will generally involve the complete multidisciplinary team in screening different solutions, then pursuing one or two chosen options to realisation and test. Our consortium brings together four partners: Warwick, Loughborough, Ulster and London South Bank Universities with proven track records in electric and gas heat pumps, refrigeration technology, heat storage as well as policy / regulation, end-user behaviour and business modelling. Industrial, commercial, NGO and regulatory resources and advice will come from major stakeholders such as DECC, Energy Technologies Institute, National Grid, British Gas, Asda, Co-operative Group, Hewlett Packard, Institute of Refrigeration, Northern Ireland Housing Executive. An Advisory Board with representatives from Industry, Government, Commerce, and Energy Providers as well as international representation from centres of excellence in Germany, Italy and Australia will provide guidance. Collaboration (staff/student exchange, sharing of results etc.) with government-funded thermal energy centres in Germany (at Fraunhofer ISE), Italy (PoliMi, Milan) and Australia (CSIRO) clearly demonstrate the international relevance and importance of the topic and will enhance the effectiveness of the international effort to combat climate change.
more_vert assignment_turned_in Project2014 - 2023Partners:Merseyside Fire & Rescue Service, University of Maryland, DataScouting, Ural Works of Civil Aviation, Science and Technology Facilities Council +80 partnersMerseyside Fire & Rescue Service,University of Maryland,DataScouting,Ural Works of Civil Aviation,Science and Technology Facilities Council,FNA (Financial Network Analytics),IBM (United Kingdom),University of Leuven,University of Sao Paolo,Ural Works of Civil Aviation,University of Tsukuba,DPU,IBM (United States),Aero DNA,UZH,National Tsing Hua University,MZ Intelligent Systems,Schlumberger Cambridge Research Limited,Universidade de Sao Paulo,University of Sao Paulo,Arup Group,Merseyside Fire & Rescue Service,Munich Re Group,LMS UK,Rolls Royce (International),Fraunhofer,NOC (Up to 31.10.2019),Arup Group Ltd,LR IMEA,University of Tsukuba,Dalian University of Technology,Russian Academy of Sciences,Technical University of Kaiserslautern,Nuclear Decommissioning Authority,Lloyd's Register,National Nuclear Laboratory (NNL),IBM (United Kingdom),Proudman Oceanographic Laboratory,University of Leuven,NDA,AREVA GmbH,University of Liverpool,UMCP,FHG,Nuclear Decommissioning Authority,Cartrefi Conwy,SCR,National Tsing Hua University,KU Leuven,IBM UNITED KINGDOM LIMITED,RAS,AREVA GmbH,Health and Safety Executive (HSE),Ove Arup & Partners Ltd,Polytechnic University of Milan,University of Zurich,NOC,University of Liverpool,Aero DNA,UKCEH,Rolls Royce (International),European Centre for Soft Computing,STFC - LABORATORIES,HYDRA Operations,Lloyd's Register EMEA,DataScouting,HYDRA Operations,LMS UK,Rice University,NCK Inc,Cartrefi Conwy,MMI Engineering Ltd,Health and Safety Executive,OvGU,European Centre for Soft Computing,NCK Inc,EPFZ,Munich Re,Rice University,SMRE,MMI Engineering Ltd,ETH Zurich,STFC - Laboratories,NERC CEH (Up to 30.11.2019),NNLFunder: UK Research and Innovation Project Code: EP/L015927/1Funder Contribution: 4,159,160 GBPRisk is the potential of experiencing a loss when a system does not operate as expected due to uncertainties. Its assessment requires the quantification of both the system failure potential and the multi-faceted failure consequences, which affect further systems. Modern industries (including the engineering and financial sectors) require increasingly large and complex models to quantify risks that are not confined to single disciplines but cross into possibly several other areas. Disasters such as hurricane Katrina, the Fukushima nuclear incident and the global financial crisis show how failures in technical and management systems cause consequences and further failures in technological, environmental, financial, and social systems, which are all inter-related. This requires a comprehensive multi-disciplinary understanding of all aspects of uncertainty and risk and measures for risk management, reduction, control and mitigation as well as skills in applying the necessary mathematical, modelling and computational tools for risk oriented decision-making. This complexity has to be considered in very early planning stages, for example, for the realisation of green energy or nuclear power concepts and systems, where benefits and risks have to be considered from various angles. The involved parties include engineering and energy companies, banks, insurance and re-insurance companies, state and local governments, environmental agencies, the society both locally and globally, construction companies, service and maintenance industries, emergency services, etc. The CDT is focussed on training a new generation of highly-skilled graduates in this particular area of engineering, mathematics and the environmental sciences based at the Liverpool Institute for Risk and Uncertainty. New challenges will be addressed using emerging probabilistic technologies together with generalised uncertainty models, simulation techniques, algorithms and large-scale computing power. Skills required will be centred in the application of mathematics in areas of engineering, economics, financial mathematics, and psychology/social science, to reflect the complexity and inter-relationship of real world systems. The CDT addresses these needs with multi-disciplinary training and skills development on a common mathematical platform with associated computational tools tailored to user requirements. The centre reflects this concept with three major components: (1) Development and enhancement of mathematical and computational skills; (2) Customisation and implementation of models, tools and techniques according to user requirements; and (3) Industrial and overseas university placements to ensure industrial and academic impact of the research. This will develop graduates with solid mathematical skills applied on a systems level, who can translate numerical results into languages of engineering and other disciplines to influence end-users including policy makers. Existing technologies for the quantification and management of uncertainties and risks have yet to achieve their significant potential benefit for industry. Industrial implementation is presently held back because of a lack of multidisciplinary training and application. The Centre addresses this problem directly to realise a significant step forward, producing a culture change in quantification and management of risk and uncertainty technically as well as educationally through the cohort approach to PGR training.
more_vert assignment_turned_in Project2014 - 2017Partners:TriQuint Semiconductor, University of Bristol, IQE SILICON, UMS, Fraunhofer +10 partnersTriQuint Semiconductor,University of Bristol,IQE SILICON,UMS,Fraunhofer,Mesuro,IQE PLC,FHG,IQE (United Kingdom),Selex-Galileo,University of Bristol,TriQuint Semiconductor,Mesuro,United Monolithic Semiconductors (UMS),Selex-GalileoFunder: UK Research and Innovation Project Code: EP/K026232/1Funder Contribution: 540,317 GBPAlGaN/GaN high electron mobility transistors (HEMT) are a key enabling technology for future high efficiency military and civilian microwave systems. The aim of this proposal is to provide transformative insight into the underlying physical processes that cause degradation in GaN RF power amplifiers (PA). This is of strategic importance for the UK given its strong RF electronics base, due to the fact that GaN RF power electronics delivers a disruptive step change in systems capability through power densities as high as 40W/mm and frequencies exceeding 300GHz. The UK has internationally leading academic research groups in this field, including Bristol and Cardiff. The key issue addressed in this proposal is that device degradation under RF stress is distinctly different than under DC stress, often resulting in a large increase in source resistance, something that never occurs under DC stress and is not explicable by conventional models. This observation implies that a device in RF operation applies voltage/current stresses, which are inaccessible under static conditions, making it imperative to understand the interaction between the RF operating mode and the degradation mechanism. Bristol has provided seminal contributions to the international effort to understand DC GaN transistor degradation, where an understanding is slowly emerging that includes oxygen related reactions and diffusion processes, and dislocation linked breakdown in GaN transistors. This includes electroluminescence imaging for detection of leakage pathways, dynamic transconductance and transient analysis to detect trapping states, and the simulation of the effect of pulsed operation on bulk and surface traps. Over the last 15 years, Cardiff has established a world leading capability in RF PA design and measurement. In particular waveform engineering systems enable RF current/voltage waveforms to not only be measured directly but also to be manipulated almost at will. This manipulation of the waveform has allowed Cardiff to make seminal contributions to the understanding of high efficiency RF PA operation. In this project, the unique capability to 'tune' RF operation into extremely well defined states to enable 'controlled' RF stressing will be used to gain the step change understanding of RF device degradation. Reverse engineering of failed devices, electrical and electro-optical measurement before/after and during the RF stress, combined with physical device simulation, will be used to determine the RF specific degradation mechanisms. This capability to predict, engineer and measure the RF waveforms is key to achieving an understanding of the RF stresses that devices undergo during PA operation, and then to determine and specify the safe-operating-area for HEMTs. This project utilises a partnership with state-of-the-art foundries in Germany and the USA, allowing the project to use production quality devices, essential for the relevance of the work. The project will be guided in terms of its relevance through guidance and interaction with Selex for systems level issues and IQE for the materials. The key synergy of Bristol and Cardiff will address a vitally important issue for the uptake of this disruptive technology, the identification of the RF degradation mechanisms. This will enable the impact of different modes of RF operation to be predicted, and a novel robust RF reliability test methodology to be developed, thus delivering large UK benefit and international impact.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right