Powered by OpenAIRE graph
Found an issue? Give us feedback

Duality Quantum Photonics Ltd

Duality Quantum Photonics Ltd

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/Z533208/1
    Funder Contribution: 21,272,300 GBP

    o achieve this vision, we will address major global research challenges towards the establishment of the "quantum internet" —?globally interlinked quantum networks which connect quantum nodes via quantum channels co-existing with classical telecom networks. These research challenges include: low-noise quantum memories with long storage time; connecting quantum processors at all distance scales; long-haul and high-rate quantum communication links; large-scale entanglement networks with agile routing capabilities compatible with - and embedded in - classical telecommunicatons networks; cost-effective scalability, standardisation, verification and certification. By delivering technologies and techniques to our industrial innovation partners, the IQN Hub will enable UK academia, national laboratories, industry, and end-users to be at the forefront of the quantum networking revolution. The Hub will utilise experience in the use of photonic entanglement for quantum key distribution (QKD) alongside state-of-the art quantum memory research from existing EPSRC Quantum Technology Hubs and other projects to form a formidable consortium tackling the identified challenges. We will research critical component technology, which will underpin the future national supply chain, and we will make steps towards global QKD and the intercontinental distribution of entanglement via satellites. This will utilise the Hub Network's in-orbit demonstrator due to be launched in late 2024, as well as collaboration with upcoming international missions. With the National Quantum Computing Centre (NQCC), we will explore applications towards quantum advantage demonstrations such as secure access to the quantum cloud, achievable only through entanglement networks. Hub partner National Physical Laboratory (NPL) working with our academic partners and the National Cyber Security Centre (NCSC) will ensure that our efforts are compatible with emerging quantum regulatory standards and post-quantum cybersecurity to bolster national security. We will foster synergies with competing international efforts through healthy exchange with our global partners. The Hub's strong industrial partner base will facilitate knowledge exchange and new venture creation. Achieving the IQN Hub's vision will provide a secure distributed and entanglement-enabled quantum communication infrastructure for UK end-users. Industry, government stakeholders and the public will be able to secure data in transit, in storage and in computation, exploiting unique quantum resources and functionalities. We will use a hybrid approach with existing classical cyber-security standards, including novel emerging post-quantum algorithms as well as hardware security modules. We will showcase our ambition with target use-cases that have emerged as barriers for industry, after years of investigation within the current EPSRC QT Hubs as well as other international efforts. These barriers include security and integrity of: (1) device authentication, identification, attestation, verification; (2) distributed and cloud computing; (3) detection, measurement, sensing, synchronisation. We will demonstrate novel applications as well as identify novel figures of merit (such as resilience, accuracy, sustainability, communication complexity, cost, integrity, etc.) beyond security enhancement alone to ensure the national quantum entanglement network can be fully exploited by our stakeholders and our technology can be rapidly translated into a commercial setting.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z531066/1
    Funder Contribution: 11,782,400 GBP

    However, access to silicon prototyping facilities remains a challenge in the UK due to the high cost of both equipment and the cleanroom facilities that are required to house the equipment. Furthermore, there is often a disconnect in communication between industry and academia, resulting in some industrial challenges remaining unsolved, and support, training, and networking opportunities for academics to engage with commercialisation activities isn't widespread. The C-PIC host institutions comprising University of Southampton, University of Glasgow and the Science and Technologies Facilities Council (STFC), together with 105 partners at proposal stage, will overcome these challenges by uniting leading UK entrepreneurs and researchers, together with a network of support to streamline the route to commercialisation, translating a wide range of technologies from research labs into industry, underpinned by the C-PIC silicon photonics prototyping foundry. Applications will cover data centre communications; sensing for healthcare, the environment & defence; quantum technologies; artificial intelligence; LiDAR; and more. We will deliver our vision by fulfilling these objectives: Translate a wide range of silicon photonics technologies from research labs into industry, supporting the creation of new companies & jobs, and subsequently social & economic impact. Interconnect the UK silicon photonics ecosystem, acting as the front door to UK expertise, including by launching an online Knowledge Hub. Fund a broad range of Innovation projects supporting industrial-academic collaborations aimed at solving real world industry problems, with the overarching goal of demonstrating high potential solutions in a variety of application areas. Embed equality, diversity, and inclusion best practice into everything we do. Deliver the world's only open source, fully flexible silicon photonics prototyping foundry based on industry-like technology, facilitating straightforward scale-up to commercial viability. Support entrepreneurs in their journey to commercialisation by facilitating networks with venture capitalists, mentors, training, and recruitment. Represent the interests of the community at large with policy makers and the public, becoming an internationally renowned Centre able to secure overseas investment and international partners. Act as a convening body for the field in the UK, becoming a hub of skills, knowledge, and networking opportunities, with regular events aimed at ensuring possibilities for advancing the field and delivering impact are fully exploited. Increase the number of skilled staff working in impact generating roles in the field of silicon photonics via a range of training events and company growth, whilst routinely seeking additional funding to expand training offerings.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/W00660X/1
    Funder Contribution: 399,779 GBP

    This project aims to use photonic quantum simulators to investigate key open questions in particle physics involving, separately, neutrinos and mesons. The project will tackle the existence of 'sterile' flavours of neutrino, how flavour oscillations are modified by neutrino interactions, and neutral B-meson oscillations (between themselves and their antiparticle) that violate CP symmetry by a greater degree than allowed by the Standard Model. Photonics is a versatile platform for simulating fermionic and anyonic statistics, and non-Hermitian Hamiltonians. Quantum photonics experiments have progressed to the point where >100 photons can be generated, coherently manipulated, and detected. Leveraging the mature fabrication capabilities of the telecoms and microelectronics industries has allowed ~1000 optical components to be co-integrated into a single photonic quantum processor. In this project we aim to use the reconfigurability afforded by photonics to map complex systems studied in particle physics into the controllable and well understood platform of quantum photonics. Such analogue quantum simulators, where there is a one-to-one mapping between the dynamics of both systems, have been shown to be a promising avenue to useful but specific quantum computation without a fault tolerant quantum computer. Bristol University hosts an esteemed group in particle physics with longstanding links to the LHCb and CERN; the university also hosts extensive and world leading expertise and infrastructure in photonic quantum technologies. This project aims to foster interdisciplinary research, bringing the benefits of quantum computing and simulation to the high energy and particle physics community. Our ambition is for new fundamental physics to be discovered by UK particle physics researchers through modelling carried out on UK quantum computing and simulation technologies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y004655/1
    Funder Contribution: 312,190 GBP

    The project Software Enabling Early Quantum Advantage (SEEQA, pronounced 'seeker') is a joint effort by Oxford, UCL, and Bristol, supported by multiple UK quantum startup companies and NQCC. The aim is to make the era of "quantum advantage" arrive sooner! "Advantage" means having real working quantum computers that can perform tasks that are either impossible, or prohibitively slow or expensive, by any conventional means. We'll know this era has arrived when we can solve otherwise-infeasible tasks in areas such as chemistry and materials discovery or in solving complicated resource allocation problems with near-zero waste. Although quantum computers have long promised this kind of advantage, it has not yet been realised. There are many reasons -- partly it is just that the prototype hardware needs more time to mature. But progress needs to be made in the practical theory to support quantum computing, to 'lower the bar' that the hardware needs to be able to reach. This is what SEEQA will do, in three main themes: 1. Figuring out how best to use state-of-the-art conventional computing power to help early quantum computers. There are two main ways: First, the conventional computers can actually help run the task that the quantum computer is performing. The task gets broken up into lots of small quantum computations, and the conventional computer gets all the results and puts them together to decide what to do next. The other way a conventional computer can help is by monitoring the quantum processor for errors: there is some detective work to do in order to infer the nature of the errors from the evidence that comes from monitoring, and a conventional computer needs to do this -- it's called decoding. 2. Coming up with new ways in which to handle or suppress errors. As mentioned, quantum computers (especially the early ones) suffer from 'noise' which means little imperfections in everything that is done. If not handled, the resulting errors will lead to useless outputs. There are many ideas for fighting errors, but SEEQA will address new possibilities. In particular, SEEQA will investigate the interface between two major approaches to find new solutions: The approaches are called Quantum Error Mitigation (QEM), which suppresses error damage, and Quantum Error Correction (QEC) which can totally fix errors but is currently very expensive in terms of number of components needed. Also, SEEQA will explore and advance some of the more recent and sophisticated ideas for handling measurement errors -- if you can't trust the output of the quantum computer you are very limited! 3. Finally, SEEQA will focus on the interrelationship between the architecture or protocol we would like to perform, and the available hardware architecture (including noise sources and other imperfections, the 'topology' which means the question of which qubits can directly 'see' other qubits, and so on). Although quite a bit is known about this, there remain a great many questions within the two themes (a) "what algorithms can run well on my architecture?", and (b) "what architectures can my algorithm run on?" Underpinning all this theoretical research, it will be vital to be able to test things out. The SEEQA project will have two kinds of provision: First, very efficient software that runs on conventional computers to 'pretend' to be quantum computers - exactly simulating them using the well-known laws of quantum physics. However it will only ever be possible to work with small emulated quantum computers because the quantum state is so complex. So it is vital that SEEQA also has access to real prototype quantum processors -- and as many as possible because they are various types. Fortunately SEEQA has multiple letters of support, offering resources approaching £500k, from pioneering UK hardware companies that have working quantum prototypes right now. They will make available their experts and their devices to SEEQA in order to help us to succeed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W035995/1
    Funder Contribution: 1,538,490 GBP

    Silicon photonics is the manipulation of light (photons) in silicon-based substrates, analogous to electronics, which is the manipulation of electrons. The development cycle of a silicon photonics device consists of three stages: design, fabrication, and characterisation. Whilst design and characterisation can readily be done by research groups around the country, the fabrication of silicon photonics devices, circuits and systems requires large scale investments and capital equipment such as cleanrooms, lithography, etching equipment etc. Based at the Universities of Southampton and Glasgow, CORNERSTONE 2.5 will provide world-leading fabrication capability to silicon photonics researchers and the wider science community. Whilst silicon photonics is the focus of CORNERSTONE 2.5, it will also support other technologies that utilise similar fabrication processes, such as MEMS or microfluidics, and the integration of light sources with silicon photonics integrated circuits, as well as supporting any research area that requires high-resolution lithography. The new specialised capabilities available to researchers to support emerging applications in silicon photonics are: 1) quantum photonics based on silicon-on-insulator (SOI) wafers; 2) programmable photonics; 3) all-silicon photodetection; 4) high efficiency grating couplers for low energy, power sensitive systems; 5) enhanced sensing platforms; and 6) light source integration to the silicon nitride platform. Access will be facilitated via a multi-project-wafer (MPW) mechanism whereby multiple users' designs will be fabricated in parallel on the same wafer. This is enabled by the 8" wafer-scale processing capability centred around a deep-UV projection lithography scanner installed at the University of Southampton. The value of CORNERSTONE 2.5 to researchers who wish to use it is enhanced by a network of supporting companies, each providing significant expertise and added value to users. Supporting companies include process-design-kit (PDK) software specialists (Luceda Photonics), reticle suppliers (Compugraphics, Photronics), packaging facilities (Tyndall National Institute, Bay Photonics, Alter Technologies), a mass production silicon photonics foundry (CompoundTek), an epitaxy partner for germanium-on-silicon growth (IQE), fabrication processing support (Oxford Instruments), an MPW broker (EUROPRACTICE), a III-V die supplier (Sivers Semiconductors) and promotion and outreach partners (Photonics Leadership Group, EPIC, CSA Catapult, CPI, Anchored In). Access to the new capabilities will be free-of-charge to UK academics in months 13-18 of the project, and 75% subsidised by the grant in months 19-24. During the 2-year project, we will also canvas UK demand for the capability to continue to operate as an EPSRC National Research Facility, and if so, to establish a Statement of Need.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.