
Kuka Roboter GmbH
Kuka Roboter GmbH
2 Projects, page 1 of 1
assignment_turned_in Project2017 - 2021Partners:Imperial College London, Intel UK, Auris Health (United States), Kuka Roboter GmbH, KUKA (Germany) +3 partnersImperial College London,Intel UK,Auris Health (United States),Kuka Roboter GmbH,KUKA (Germany),Intel UK,Intel Corporation (UK) Ltd,Hansen Medical IncFunder: UK Research and Innovation Project Code: EP/N024877/1Funder Contribution: 1,112,060 GBPVascular disease is the most common precursor to ischaemic heart disease and stroke, which are two of the leading causes of death worldwide. Advances in endovascular intervention in recent years have transformed patient survival rates and post-surgical quality of life. Compared to open surgery, it has the advantages of faster recovery, reduced need for general anaesthesia, reduced blood loss and significantly lower mortality. However, endovascular intervention involves complex manoeuvring of pre-shaped catheters to reach target areas in the vasculature. Some endovascular tasks can be challenging for even highly-skilled operators. The use of robot assisted endovascular intervention aims to address some of these difficulties, with the added benefit of allowing the operator to remotely control and manipulate devices, thus avoiding exposure to X-ray radiation. The purpose of this work is to develop a new robot-assisted endovascular platform, incorporating novel device designs with improved human-robot control. It builds on our strong partnership with industry aiming to develop the next generation robots that are safe, effective, and accessible to general NHS populations.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8a2d1a778866c19060e7025b658285fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::8a2d1a778866c19060e7025b658285fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2023Partners:Active Needle Technology Ltd, University of Glasgow, Active Needle Technology Ltd, Stryker International, PZFlex Limited (UK) +21 partnersActive Needle Technology Ltd,University of Glasgow,Active Needle Technology Ltd,Stryker International,PZFlex Limited (UK),University of Glasgow,NHS Greater Glasgow and Clyde,KUKA (Germany),Kuka Roboter GmbH,Intuitive Surgical Inc,PZFlex Limited (UK),Thales Underwater Systems (replace),SICCAS,CTS Corporation,Stryker International,Intuitive Surgical Inc,Dentsply Sirona,NHS Greater Glasgow and Clyde,CTS Corporation,NHS GREATER GLASGOW AND CLYDE,Thales Underwater Systems,CAS,Dentsply Sirona (United States),Sonic Systems Limited,Sonic Systems Limited,Thales Underwater SystemsFunder: UK Research and Innovation Project Code: EP/R045291/1Funder Contribution: 6,114,690 GBPThe range of surgical tools for interventional procedures that dissect or fragment tissue has not changed significantly for millennia. There is huge potential for ultrasonic devices to enable new minimal access surgeries, offering higher precision, much lower force, better preservation of delicate structures, low thermal damage and, importantly, enabling more procedures to be carried out on an out-patient or day surgery basis. To realise this potential, and deliver our vision of ultrasonics being the technology of choice for minimal access interventional surgery, a completely new approach to device design is required, to achieve miniaturisation and to incorporate both a cutting and healing capability in the devices. By integrating with innovative flexible, tentacle-like surgical robots, we will bring ultrasonic devices deep into the human body, along tortuous pathways to the surgical site, to deliver unparalleled precision. Unsurpassed precision in challenging neurological, skull-base and spinal procedures as well as in general surgery is attainable through tailoring the robotic-ultrasonic devices to deliver the exact ultrasonic energy to the exact locations required to optimise the surgery. We will achieve this by quantifying the effects of the ultrasonic excitations typical of surgical devices in tissues, at and surrounding the site of surgery, in terms of precision cutting, tissue damage (mechanical damage, thermal necrosis, cavitation) but also the potential to aid regeneration. We will make world-leading advances in ultra-high speed imaging measurements and biophysical analysis, complementing advances in histology and clinical assessment, to develop a combined approach to the characterisation of both damage and regeneration of tissue. Through this holistic approach to device design, we will create integrated robotic-ultrasonic surgical devices tailored for optimised surgery.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7bd8b1bd0836ef0242eed12f20866b5c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7bd8b1bd0836ef0242eed12f20866b5c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu