Powered by OpenAIRE graph
Found an issue? Give us feedback

CMR Surgical (United Kingdom)

CMR Surgical (United Kingdom)

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/F035764/1
    Funder Contribution: 383,823 GBP

    The first viable large scale fuel cell systems were the liquid electrolyte alkaline fuel cells developed by Francis Bacon. Until recently the entire space shuttle fleet was powered by such fuel cells. The main difficulties with these fuel cells surrounded the liquid electrolyte, which was difficult to immobilise and suffers from problems due to the formation of low solubility carbonate species. Subsequent material developments led to the introduction of proton-exchange membranes (PEMs e.g. Nafion(r)) and the development of the well-known PEMFC. Cost is a major inhibitor to commercial uptake of PEMFCs and is localised on 3 critical components: (1) Pt catalysts (loadings still high despite considerable R&D); (2) the PEMs; and (3) bipolar plate materials (there are few cheap materials which survive contact with Nafion, a superacid). Water balance within PEMFCs is difficult to optimise due to electro-osmotic drag. Finally, PEM-based direct methanol fuel cells (DMFCs) exhibit reduced performances due to migration of methanol to the cathode (voltage losses and wasted fuel).Recent advances in materials science and chemistry has allowed the production of membrane materials and ionomers which would allow the development of the alkaline-equivalent to PEMs. The application of these alkaline anion-exchange membranes (AAEMs) promises a quantum leap in fuel cell viability. The applicant team contains the world-leaders in the development of this innovative technology. Such fuel cells (conduction of OH- anions rather than protons) offer a number of significant advantages:(1) Catalysis of fuel cell reactions is faster under alkaline conditions than acidic conditions - indeed non-platinum catalysts perform very favourably in this environment e.g. Ag for oxygen reduction.(2) Many more materials show corrosion resistance in alkaline than in acid environments. This increases the number and chemistry of materials which can be used (including cheap, easy stamped and thin metal bipolar plate materials).(3) Non-fluorinated ionomers are feasible and promise significant membrane cost reductions.(4) Water and ionic transport within the OH-anion conducting electrolytes is favourable electroosmotic drag transports water away from the cathode (preventing flooding on the cathode, a major issue with PEMFCs and DMFCs). This process also mitigates the 'crossover' problem in DMFCs.This research programme involves the development of a suite of materials and technology necessary to implement the alkaline polymer electrolyte membrane fuel cells (APEMFC). This research will be performed by a consortium of world leading materials scientists, chemists and engineers, based at Imperial College London, Cranfield university, University of Newcastle and the University of Surrey. This team, which represents one of the best that can be assembled to undertake such research, embodies a multiscale understanding on experimental and theoretical levels of all aspects of fuel cell systems, from fundamental electrocatalysis to the stack level, including diagnostic approaches to assess those systems. The research groups have already explored some aspects of APEMFCs and this project will undertake the development of each aspect of the new technology in an integrated, multi-pronged approach whilst communicating their ongoing results to the members of a club of relevant industrial partners. The extensive opportunities for discipline hopping and international-level collaborations will be fully embraced. The overall aim is to develop membrane materials, catalysts and ionomers for APEMFCs and to construct and operate such fuel cells utilising platinum-free electrocatalysts. The proposed programme of work is adventurous: however, risks have been carefully assessed alongside suitable mitigation strategies (the high risk components promise high returns but have few dependencies). Success will lead to the U.K. pioneering a new class of clean energy conversion technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F02858X/1
    Funder Contribution: 330,993 GBP

    The first viable large scale fuel cell systems were the liquid electrolyte alkaline fuel cells developed by Francis Bacon. Until recently the entire space shuttle fleet was powered by such fuel cells. The main difficulties with these fuel cells surrounded the liquid electrolyte, which was difficult to immobilise and suffers from problems due to the formation of low solubility carbonate species. Subsequent material developments led to the introduction of proton-exchange membranes (PEMs e.g. Nafion(r)) and the development of the well-known PEMFC. Cost is a major inhibitor to commercial uptake of PEMFCs and is localised on 3 critical components: (1) Pt catalysts (loadings still high despite considerable R&D); (2) the PEMs; and (3) bipolar plate materials (there are few inexpensive materials which survive contact with Nafion, a superacid). Water balance within PEMFCs is difficult to optimise due to electro-osmotic drag. Finally, PEM-based direct methanol fuel cells (DMFCs) exhibit reduced performances due to migration of methanol to the cathode (voltage losses and wasted fuel).Recent advances in materials science and chemistry has allowed the production of membrane materials and ionomers which would allow the development of the alkaline-equivalent to PEMs. The application of these alkaline anion-exchange membranes (AAEMs) promises a quantum leap in fuel cell viability. The applicant team contains the world-leaders in the development of this innovative technology. Such fuel cells (conduction of OH- anions rather than protons) offer a number of significant advantages:(1) Catalysis of fuel cell reactions is faster under alkaline conditions than acidic conditions - indeed non-platinum catalysts perform very favourably in this environment e.g. Ag for oxygen reduction.(2) Many more materials show corrosion resistance in alkaline than in acid environments. This increases the number and chemistry of materials which can be used (including cheap, easy stamped and thin metal bipolar plate materials).(3) Non-fluorinated ionomers are feasible and promise significant membrane cost reductions.(4) Water and ionic transport within the OH-anion conducting electrolytes is favourable electroosmotic drag transports water away from the cathode (preventing flooding on the cathode, a major issue with PEMFCs and DMFCs). This process also mitigates the 'crossover' problem in DMFCs.This research programme involves the development of a suite of materials and technology necessary to implement the alkaline polymer electrolyte membrane fuel cells (APEMFC). This research will be performed by a consortium of world leading materials scientists, chemists and engineers, based at Imperial College London, Cranfield University, University of Newcastle and the University of Surrey. This team, which represents one of the best that can be assembled to undertake such research, embodies a multiscale understanding on experimental and theoretical levels of all aspects of fuel cell systems, from fundamental electrocatalysis to the stack level, including diagnostic approaches to assess those systems. The research groups have already explored some aspects of APEMFCs and this project will undertake the development of each aspect of the new technology in an integrated, multi-pronged approach whilst communicating their ongoing results to the members of a club of relevant industrial partners. The extensive opportunities for discipline hopping and international-level collaborations will be fully embraced. The overall aim is to develop membrane materials, catalysts and ionomers for APEMFCs and to construct and operate such fuel cells utilising platinum-free electrocatalysts. The proposed programme of work is adventurous: however, risks have been carefully assessed alongside suitable mitigation strategies (the high risk components promise high returns but have few dependencies). Success will lead to the U.K. pioneering a new class of clean energy conversion technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X030628/1
    Funder Contribution: 2,639,080 GBP

    Digital Health technologies can make a positive difference to the outcomes of patient treatment, management and care. Improving digital services and the sharing and use of data will also save time and resources so that staff can better focus on delivering medical and social care. Examples of such technologies include data collected through smartphones. For example, the ZOE COVID Symptom Study App used during the pandemic was jointly developed by King's College London, and now has more than four million users. Other digital technologies include wearable devices which can help monitor heart rate, activity and sleep and remotely assess and help manage a wide range of conditions. For example, the £23M Innovative Medicines Initiative RADAR-CNS led by King's has pioneered their use in depression, multiple sclerosis and epilepsy. Our aim is to enable the development of new digital technologies and reduce the time it takes for these to benefit patient care. The King's Health Partner (KHP) Digital Health Hub will do this by helping researchers, health and social care staff, patients and industry to work together better. We also hope to increase the availability of such technologies nationally by offering support to enable new businesses to grow rapidly, thereby making a more immediate difference to patients' lives. Digital health technologies have lots of potential but their widespread use is limited by: - A lack of examples of how clinicians, academics, engineers, quality assurance experts, health economists, patients and end users can best work together during development - Specific gaps in training and knowledge amongst the different groups, for example: - Academic and industry technologists may have trouble understanding NHS systems and fail to engage with the end users of the technologies they are trying to develop, such as health care providers, patients and carers. They may not know about or understand the complex regulatory pathway which needs to be followed before such technologies can be used in clinical practice. - Clinical specialists may lack the appropriate technical skills such as data analyses, coding and programming languages to help them develop digital applications they think will be helpful to their patients. The KHP Digital Health Hub will help to overcome the barriers to the rapid development and use of digital technologies nationally. It will be an accessible "ecosystem" comprising specialists from different sectors working together to improve understanding and use of digital technologies and addressing the government's long-term goals for health and social care. With our partners, we will connect the digital health research community to the substantial opportunities for investment in London and our diverse and world leading healthcare research environment. We have brought together a wealth of expertise from across KHP, including King's College London and partner NHS Trusts, patients and industry collaborators, to provide support and training, and create opportunities for the acceleration of digital health across the UK. KHP includes seven mental health and physical healthcare hospitals and many community sites with ~4.8 million patient contacts each year and a combined annual turnover of more than £3.7 billion. The KHP Digital Health Hub will provide: - proven expertise, infrastructure and experience of co-creation and commercialisation - a three-way clinical, academic and industry partnership - a physical location where technology developers can work collaboratively, and - an excellent track record in training which will be offered to all our partners across the health and social care sectors. With the right support and networks in place, digital health technologies have the power to transform patient care and experiences across the UK. The knowledge and expertise is all there, and together we can make sure it is shared, translated and built upon, at every step of the way.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F027524/1
    Funder Contribution: 291,480 GBP

    The first viable large scale fuel cell systems were the liquid electrolyte alkaline fuel cells developed by Francis Bacon. Until recently the entire space shuttle fleet was powered by such fuel cells. The main difficulties with these fuel cells surrounded the liquid electrolyte, which was difficult to immobilise and suffers from problems due to the formation of low solubility carbonate species. Subsequent material developments led to the introduction of proton-exchange membranes (PEMs e.g. Nafion(r)) and the development of the well-known PEMFC. Cost is a major inhibitor to commercial uptake of PEMFCs and is localised on 3 critical components: (1) Pt catalysts (loadings still high despite considerable R&D); (2) the PEMs; and (3) bipolar plate materials (there are few inexpensive materials which survive contact with Nafion, a superacid). Water balance within PEMFCs is difficult to optimise due to electro-osmotic drag. Finally, PEM-based direct methanol fuel cells (DMFCs) exhibit reduced performances due to migration of methanol to the cathode (voltage losses and wasted fuel).Recent advances in materials science and chemistry has allowed the production of membrane materials and ionomers which would allow the development of the alkaline-equivalent to PEMs. The application of these alkaline anion-exchange membranes (AAEMs) promises a quantum leap in fuel cell viability. The applicant team contains the world-leaders in the development of this innovative technology. Such fuel cells (conduction of OH- anions rather than protons) offer a number of significant advantages:(1) Catalysis of fuel cell reactions is faster under alkaline conditions than acidic conditions - indeed non-platinum catalysts perform very favourably in this environment e.g. Ag for oxygen reduction.(2) Many more materials show corrosion resistance in alkaline than in acid environments. This increases the number and chemistry of materials which can be used (including cheap, easy stamped and thin metal bipolar plate materials).(3) Non-fluorinated ionomers are feasible and promise significant membrane cost reductions.(4) Water and ionic transport within the OH-anion conducting electrolytes is favourable electroosmotic drag transports water away from the cathode (preventing flooding on the cathode, a major issue with PEMFCs and DMFCs). This process also mitigates the 'crossover' problem in DMFCs.This research programme involves the development of a suite of materials and technology necessary to implement the alkaline polymer electrolyte membrane fuel cells (APEMFC). This research will be performed by a consortium of world leading materials scientists, chemists and engineers, based at Imperial College London, Cranfield University, University of Newcastle and the University of Surrey. This team, which represents one of the best that can be assembled to undertake such research, embodies a multiscale understanding on experimental and theoretical levels of all aspects of fuel cell systems, from fundamental electrocatalysis to the stack level, including diagnostic approaches to assess those systems. The research groups have already explored some aspects of APEMFCs and this project will undertake the development of each aspect of the new technology in an integrated, multi-pronged approach whilst communicating their ongoing results to the members of a club of relevant industrial partners. The extensive opportunities for discipline hopping and international-level collaborations will be fully embraced. The overall aim is to develop membrane materials, catalysts and ionomers for APEMFCs and to construct and operate such fuel cells utilising platinum-free electrocatalysts. The proposed programme of work is adventurous: however, risks have been carefully assessed alongside suitable mitigation strategies (the high risk components promise high returns but have few dependencies). Success will lead to the U.K. pioneering a new class of clean energy conversion technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/D047943/1
    Funder Contribution: 2,024,720 GBP

    A consortium of teams from 6 universities aims to achieve major advances in a technology that potentially produces electricity directly from sustainable biological materials and air, in devices known as biological fuel cells. These devices are of two main types: in microbial fuel cells micro-organisms convert organic materials into fuels that can be oxidised in electrochemical cells, and in enzymatic fuel cells electricity is produced as a result of the action of an enzyme (a biological catalyst). Fuels that can be used include (1) pure biochemicals such as glucose, (2) hydrogen gas and (3) organic chemicals present in waste water.The Consortium programme involves a unique combination of microbiology, enzymology, electrochemistry, materials science and computational modelling. Key challenges that the Consortium will face include modelling and understanding the interaction of an electrochemical cell and a population of micro-organisms, attaching and optimising appropriate enzymes, developing and studying synthetic assemblies that contain the active site of a natural enzyme, optimising electrode materials for this application, and designing, building and testing novel biological fuel cells.A Biofuel Cells Industrial Club is to be formed, with industrial partners active in water management, porous materials, microbiology, biological catalysis and fuel cell technology. The programme and its outcomes will be significant steps towards producing electricity from materials and techniques originating in the life sciences. The technology is likely to be perceived as greener than use of solely chemical and engineering approaches, and there is considerable potential for spin off in changed technologies (e.g. cost reductions, reduction in the need for precious metals, biological catalysts for production of hydrogen by electrolysis).

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.