
STMicroelectronics (United Kingdom)
STMicroelectronics (United Kingdom)
8 Projects, page 1 of 2
assignment_turned_in Project2014 - 2018Partners:Ordnance Survey, STMicroelectronics (United Kingdom), RNIB, S T Microelectronics, UCL +6 partnersOrdnance Survey,STMicroelectronics (United Kingdom),RNIB,S T Microelectronics,UCL,Royal National Inst of Blind People RNIB,S T Microelectronics,OS,OS,RNIB,Royal National Institute of BlindFunder: UK Research and Innovation Project Code: EP/L018446/1Funder Contribution: 361,096 GBPPoor positioning performance in dense urban areas is a major obstacle to the practical realisation of new technologies such as navigation for the visually impaired, tracking people with chronic medical conditions, augmented reality, advanced lane control systems for vehicles and advanced railway signalling systems. The Global Positioning System (GPS) provides metres-level positioning in open environments. However in dense urban areas, buildings block, attenuate, reflect and diffract radio signals, limiting the real-time positioning accuracy to 10-50m when enough signals can be received to calculate a position. Other radio positioning technologies are typically no more accurate, while position obtained from dead reckoning degrades with time. Optical techniques developed by the robotics community are more suited to some applications than others and are still undergoing research to make them more reliable and efficient. Using the new global navigation satellite systems (GNSS) constellations (i.e., GLONASS and, in future, Galileo and Compass) in addition to GPS improves the availability of satellite-based positioning in urban areas. However, to improve the accuracy, a new approach to positioning is needed and the increasing availability of 3D mapping provides an opportunity to achieve this. The aim of this project is thus to improve the accuracy of real-time mobile positioning in urban areas to within a few metres by combining multi-constellation GNSS with 3D mapping, a concept known as intelligent urban positioning. By exploiting knowledge of the surroundings provided by 3D city models and rebuilding the positioning algorithms from the bottom up to make use of all available information, a step change in positioning performance can be achieved, unlocking the potential for a host of new positioning applications. This research will build on UCL's track record of innovation in urban positioning, including the development of a brand new GNSS positioning method known as shadow matching. This project will investigate new ways of using 3D mapping to aid ranging-based GNSS positioning and then combine this with shadow matching to obtain the best overall position solution. Testing will be conducted under a wide range of scenarios to assess how the performance varies as a function of the urban environment, the class of GNSS user equipment used and the characteristics of the 3D mapping. Finally, context detection algorithms will be developed to determine when the positioning system is in an environment suitable for the algorithms developed under this project and when it is in an environment where conventional GNSS algorithms or an indoor positioning technique should be deployed instead. By improving the accuracy and reliability of urban positioning, a successful outcome of this project would unlock the potential for many new applications that can both contribute to the economy and provide solutions to societal problems, while improving the reliability of many existing technologies. Positioning technology that can determine the correct side of the street and identify adjacent buildings is a key component of automated guidance for visually impaired pedestrians. More accurate emergency caller location and tracking of people with chronic medical conditions enables response teams to arrive more quickly. Augmented reality will benefit from a more efficient overlaying of information on the surrounding environment. Researchers mapping patterns of air pollution or wheelchair accessibility in cities will be able to quickly and cheaply geolocate information to within a few metres. More reliable identification of traffic lanes and railway tracks will support the development of advanced intelligent transport systems. Route guidance for visitors to cities, location of friends and business associates in complex or crowded urban environments, and location-based advertising will also benefit.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ca4c56374190a0d8d721d4d1f7b444e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ca4c56374190a0d8d721d4d1f7b444e0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:S T Microelectronics, EADS Astrium, CAA, CAA, Ordnance Survey +26 partnersS T Microelectronics,EADS Astrium,CAA,CAA,Ordnance Survey,Qioptiq Ltd,TRTUK,STMicroelectronics (United Kingdom),Qinetiq (United Kingdom),Leica Geosystems Ltd,Air Semiconductor Ltd,TRTUK,OS,Civil Aviation Authority,Imperial College London,Air Semiconductor Ltd,Leica Microsystems (United Kingdom),Air Semiconductor Ltd,Thales (United Kingdom),OS,EADS Astrium,Thales Research and Technology UK Ltd,Leica Microsystems (United Kingdom),Nottingham Scientific (United Kingdom),S T Microelectronics,Nottingham Scientific Ltd,Airbus (United Kingdom),EADS Astrium,NOTTINGHAM SCIENTIFIC LTD,NOTTINGHAM SCIENTIFIC LTD,Qioptiq LtdFunder: UK Research and Innovation Project Code: EP/G01969X/1Funder Contribution: 697,820 GBPOver the past three decades the US GPS (Global Positioning System) has evolved from a system designed to provide metre-level positioning for military applications to one that is used for a diverse range of unforeseen, and mainly civilian, applications. This evolution has been both driven and underpinned by fundamental research, including that carried out at UK universities, especially in the fields of error modeling, receiver design and sensor integration. However, GPS and its current augmentations still cannot satisfy the ever increasing demands for higher performance. For instance there is insufficient coverage in many urban areas, it is not accurate enough for some engineering applications such as the laying of road pavements and receivers cannot reliably access signals indoors.However things are changing rapidly. Over the next few years the current GNSSs (Global Satellite Navigation Systems) are scheduled to evolve into new and enhanced forms. Modernised GPS and GLONASS (Russia's equivalent to GPS) will bring new signals to complement those that we have been using from GPS for the last 30 years. Also we will see the gradual deployment of new GNSSs including Europe's Galileo and China's Compass systems, so leading to at least a tripling of the number of satellite available today by about 2013 - all with signals significantly different from, and more sophisticated than, those used today.These new signals have the potential to extend the applications of GNSS into those areas that GPS alone cannot satisfy. They will also enable the invention of new positioning concepts that will significantly increase the efficiency of positioning for many of today's applications and stimulate new ones, especially those that will develop in conjunction with the anticipated fourth generation communication networks to provide the location based services that will be essential for economic development across the whole world, including the open oceans. This proposal seeks to undertake a number of specific aspects of the research that is necessary to exploit the new signals and to enable these new applications. They include those related to the design of new GNSS sensors, the modeling of various data error sources to improve positioning accuracy, and the integration of GNSSs with each other and with other positioning-related inputs such as inertial sensors, the eLORAN navigation system, and a wide rage of pseudolite and ultra-wide band radio systems. We are also seeking to find new ways to measure the quality of integrated systems so that we can realistically assess their fitness for specific purposes (especially for safety-critical and legally-critical applications). As part of our work we will build an evaluation platform to test our ideas and validate our discoveries.The proposal builds on the unique legacy of the SPACE (Seamless Positioning in All Conditions and Environments) project, which was a successful EPRSC-funded research collaboration framework that brought together the leading academic GNSS research centres in the UK, with many of the most important industrial organisations and user agencies in the field. The project laid the foundation for an effective, long-term virtual academic team with an efficient interface to access industry's needs and experience. The research proposed here will be carried out within a new collaboration framework (based on SPACE) involving four universities (UCL, Imperial, Nottingham and Westminster) and nine industrial partners (EADS Astrium, Ordnance Survey, Leica Geosystems, Air Semiconductors, ST Microsystems, Thales Research and Technology, QinetiQ, Civil Aviation Authority and NSL). The industrial partners have pledged almost 2M of in-kind support and the proposed management structure, led by one of the industrial partners, is carefully designed to foster collaboration and to bring to bear our combined facilities and resources in the most effective manner.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0f380f240e2914bd78ae1124feb84cdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0f380f240e2914bd78ae1124feb84cdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:University of Glasgow, UNSW, IMEC, Toshiba Corporation, Defence Science & Tech Lab DSTL +31 partnersUniversity of Glasgow,UNSW,IMEC,Toshiba Corporation,Defence Science & Tech Lab DSTL,Cornell University,S T Microelectronics,University of Bristol,STMicroelectronics (United Kingdom),XMOS (United Kingdom),Oclaro (United Kingdom),Defence Science & Tech Lab DSTL,University of the Basque Country,Sapienza University of Rome,University of Glasgow,Cornell University,Toshiba Corporation,Toshiba (Japan),Technical University Eindhoven,UofT,UPV,IMEC,University Of New South Wales,University of Bristol,S T Microelectronics,XMOS Ltd,Roma Tre University,Defence Science and Technology Laboratory,Oclaro Technology UK,Defence Science & Tech Lab DSTL,Cornell University,TU/e,Oclaro Technology UK,TU Delft,XMOS Ltd,Eindhoven University of TechnologyFunder: UK Research and Innovation Project Code: EP/K033085/1Funder Contribution: 1,122,320 GBPQuantum information science and technologies offer a completely new and powerful approach to processing and transmitting information by combining two of the great scientific discoveries of the 20th century - quantum mechanics and information theory. By encoding information in quantum systems, quantum information processing promises huge computation power, while quantum communications is already in its first stages of commercialisation, and offers the ultimate in information security. However, for quantum technologies to have as big an impact on science, technology and society as anticipated, a practical scalable integration platform is required where all the key components can be integrated to a single micro-chip technology, very much akin to the development of the first microelectronic integrated circuits. Of the various approaches to realising quantum technologies, single particles of light (photons) are particularly appealing due to their low-noise properties and ease of manipulation at the single qubit level. It is possible to harness the quantum mechanical properties of single photons, taking advantage of strange quantum properties such as superposition and entanglement to provide new ways to encode, process and transmit information. Quantum photonics promises to be a truly disruptive technology in information processing, communications and sensing, and for deepening our understanding of fundamental quantum physics and quantum information science. However, current approaches are limited to simple optical circuits with low photon numbers, inefficient detectors and no clear routes to scalability. For quantum optic information science to go beyond current limitations, and for quantum applications to have a significant real-world impact, there is a clear and urgent need to develop a fully integrated quantum photonic technology platform to realise large and complex quantum circuits capable of generating, manipulating and detecting large photon-number states. This Fellowship will enable the PI and his research team to develop such a technology platform, based on silicon photonics. Drawing from the advanced fabrication technologies developed for the silicon microelectronics industry, state of the art silicon quantum photonic devices will enable compact, large-scale and complex quantum circuits, experiments and applications. This technology platform will overcome the current 8-photon barrier in a scalable way, enable circuits of unprecedented complexity, and will be used to address important fundamental questions, develop new approaches to quantum communications, enhance the performance of quantum sensing, provide a platform for new routes to quantum simulations, and achieve computational complexities that can challenge the limits of conventional computing. This multidisciplinary research programme will bring together engineers, physicists and industrial partners to tackle these scientific and technological challenges.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c4f605ac61e8764fca44dbb4ec24c710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c4f605ac61e8764fca44dbb4ec24c710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:S T Microelectronics, EADS Astrium, CAA, TRTUK, University of Nottingham +27 partnersS T Microelectronics,EADS Astrium,CAA,TRTUK,University of Nottingham,STMicroelectronics (United Kingdom),Qinetiq (United Kingdom),Qioptiq Ltd,Ordnance Survey,Leica Geosystems Ltd,Air Semiconductor Ltd,TRTUK,NTU,Civil Aviation Authority,Leica Microsystems (United Kingdom),OS,Air Semiconductor Ltd,Air Semiconductor Ltd,Thales (United Kingdom),OS,Thales Research and Technology UK Ltd,Leica Microsystems (United Kingdom),Nottingham Scientific (United Kingdom),S T Microelectronics,Nottingham Scientific Ltd,EADS Astrium,Airbus (United Kingdom),CAA,EADS Astrium,NOTTINGHAM SCIENTIFIC LTD,NOTTINGHAM SCIENTIFIC LTD,Qioptiq LtdFunder: UK Research and Innovation Project Code: EP/G019533/1Funder Contribution: 625,422 GBPOver the past three decades the US GPS (Global Positioning System) has evolved from a system designed to provide metre-level positioning for military applications to one that is used for a diverse range of unforeseen, and mainly civilian, applications. This evolution has been both driven and underpinned by fundamental research, including that carried out at UK universities, especially in the fields of error modeling, receiver design and sensor integration. However, GPS and its current augmentations still cannot satisfy the ever increasing demands for higher performance. For instance there is insufficient coverage in many urban areas, it is not accurate enough for some engineering applications such as the laying of road pavements and receivers cannot reliably access signals indoors.However things are changing rapidly. Over the next few years the current GNSSs (Global Satellite Navigation Systems) are scheduled to evolve into new and enhanced forms. Modernised GPS and GLONASS (Russia's equivalent to GPS) will bring new signals to complement those that we have been using from GPS for the last 30 years. Also we will see the gradual deployment of new GNSSs including Europe's Galileo and China's Compass systems, so leading to at least a tripling of the number of satellite available today by about 2013 - all with signals significantly different from, and more sophisticated than, those used today.These new signals have the potential to extend the applications of GNSS into those areas that GPS alone cannot satisfy. They will also enable the invention of new positioning concepts that will significantly increase the efficiency of positioning for many of today's applications and stimulate new ones, especially those that will develop in conjunction with the anticipated fourth generation communication networks to provide the location based services that will be essential for economic development across the whole world, including the open oceans. This proposal seeks to undertake a number of specific aspects of the research that is necessary to exploit the new signals and to enable these new applications. They include those related to the design of new GNSS sensors, the modeling of various data error sources to improve positioning accuracy, and the integration of GNSSs with each other and with other positioning-related inputs such as inertial sensors, the eLORAN navigation system, and a wide rage of pseudolite and ultra-wide band radio systems. We are also seeking to find new ways to measure the quality of integrated systems so that we can realistically assess their fitness for specific purposes (especially for safety-critical and legally-critical applications). As part of our work we will build an evaluation platform to test our ideas and validate our discoveries.The proposal builds on the unique legacy of the SPACE (Seamless Positioning in All Conditions and Environments) project, which was a successful EPRSC-funded research collaboration framework that brought together the leading academic GNSS research centres in the UK, with many of the most important industrial organisations and user agencies in the field. The project laid the foundation for an effective, long-term virtual academic team with an efficient interface to access industry's needs and experience. The research proposed here will be carried out within a new collaboration framework (based on SPACE) involving four universities (UCL, Imperial, Nottingham and Westminster) and nine industrial partners (EADS Astrium, Ordnance Survey, Leica Geosystems, Air Semiconductors, ST Microsystems, Thales Research and Technology, QinetiQ, Civil Aviation Authority and NSL). The industrial partners have pledged almost 2M of in-kind support and the proposed management structure, led by one of the industrial partners, is carefully designed to foster collaboration and to bring to bear our combined facilities and resources in the most effective manner.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::94adf49f8d1b3fff943ec4b45c2768dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::94adf49f8d1b3fff943ec4b45c2768dc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:S T Microelectronics, EADS Astrium, CAA, CAA, Qioptiq Ltd +28 partnersS T Microelectronics,EADS Astrium,CAA,CAA,Qioptiq Ltd,Leica Geosystems Ltd,TRTUK,Air Semiconductor Ltd,STMicroelectronics (United Kingdom),Qinetiq (United Kingdom),TRTUK,Thales Research and Technology UK Ltd,OS,Civil Aviation Authority,Air Semiconductor Ltd,Ordnance Survey,Leica Microsystems (United Kingdom),Air Semiconductor Ltd,Thales (United Kingdom),OS,University of Westminster,Leica Microsystems (United Kingdom),Nottingham Scientific (United Kingdom),EADS Astrium,University of Westminster,S T Microelectronics,Nottingham Scientific Ltd,University of Westminster,Airbus (United Kingdom),EADS Astrium,NOTTINGHAM SCIENTIFIC LTD,NOTTINGHAM SCIENTIFIC LTD,Qioptiq LtdFunder: UK Research and Innovation Project Code: EP/G017107/1Funder Contribution: 631,797 GBPOver the past three decades the US GPS (Global Positioning System) has evolved from a system designed to provide metre-level positioning for military applications to one that is used for a diverse range of unforeseen, and mainly civilian, applications. This evolution has been both driven and underpinned by fundamental research, including that carried out at UK universities, especially in the fields of error modeling, receiver design and sensor integration. However, GPS and its current augmentations still cannot satisfy the ever increasing demands for higher performance. For instance there is insufficient coverage in many urban areas, it is not accurate enough for some engineering applications such as the laying of road pavements and receivers cannot reliably access signals indoors.However things are changing rapidly. Over the next few years the current GNSSs (Global Satellite Navigation Systems) are scheduled to evolve into new and enhanced forms. Modernised GPS and GLONASS (Russia's equivalent to GPS) will bring new signals to complement those that we have been using from GPS for the last 30 years. Also we will see the gradual deployment of new GNSSs including Europe's Galileo and China's Compass systems, so leading to at least a tripling of the number of satellite available today by about 2013 - all with signals significantly different from, and more sophisticated than, those used today.These new signals have the potential to extend the applications of GNSS into those areas that GPS alone cannot satisfy. They will also enable the invention of new positioning concepts that will significantly increase the efficiency of positioning for many of today's applications and stimulate new ones, especially those that will develop in conjunction with the anticipated fourth generation communication networks to provide the location based services that will be essential for economic development across the whole world, including the open oceans. This proposal seeks to undertake a number of specific aspects of the research that is necessary to exploit the new signals and to enable these new applications. They include those related to the design of new GNSS sensors, the modeling of various data error sources to improve positioning accuracy, and the integration of GNSSs with each other and with other positioning-related inputs such as inertial sensors, the eLORAN navigation system, and a wide rage of pseudolite and ultra-wide band radio systems. We are also seeking to find new ways to measure the quality of integrated systems so that we can realistically assess their fitness for specific purposes (especially for safety-critical and legally-critical applications). As part of our work we will build an evaluation platform to test our ideas and validate our discoveries.The proposal builds on the unique legacy of the SPACE (Seamless Positioning in All Conditions and Environments) project, which was a successful EPRSC-funded research collaboration framework that brought together the leading academic GNSS research centres in the UK, with many of the most important industrial organisations and user agencies in the field. The project laid the foundation for an effective, long-term virtual academic team with an efficient interface to access industry's needs and experience. The research proposed here will be carried out within a new collaboration framework (based on SPACE) involving four universities (UCL, Imperial, Nottingham and Westminster) and nine industrial partners (EADS Astrium, Ordnance Survey, Leica Geosystems, Air Semiconductors, ST Microsystems, Thales Research and Technology, QinetiQ, Civil Aviation Authority and NSL). The industrial partners have pledged almost 2M of in-kind support and the proposed management structure, led by one of the industrial partners, is carefully designed to foster collaboration and to bring to bear our combined facilities and resources in the most effective manner.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ce6594f68f0261c198f7f7ea31a94da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ce6594f68f0261c198f7f7ea31a94da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right