
Optocap (United Kingdom)
Optocap (United Kingdom)
10 Projects, page 1 of 2
assignment_turned_in Project2019 - 2020Partners:University of Sussex, Optocap Ltd, Optocap (United Kingdom), Optocap Ltd, University of SussexUniversity of Sussex,Optocap Ltd,Optocap (United Kingdom),Optocap Ltd,University of SussexFunder: UK Research and Innovation Project Code: ST/T003391/1Funder Contribution: 261,281 GBPWhilst many X-ray and gamma-ray detector technologies exist (including Si, GaAs, SiC, and CdZnTe), InGaP devices are a highly attractive alternative which occupy a sweet spot in performance. They are capable of all three desirable properties: good energy resolution, high linear absorption coefficients, and high temperature operation. As such, they are a valuable commercial proposition, with many uses in multiple fields, including: nuclear power, scientific research, mining, healthcare, security and defence, and material sterilisation. InGaP radiation detectors are being developed at University of Sussex, where they are also being prepared for commercialisation. This IPS Capital application would provide funds to purchase three items of much needed equipment which will make the technical and commercial development of the detectors more rapid: 1) a semiconductor probe station - this is a piece of equipment that allows temporary electrical connections to be made to bare die semiconductor devices before they are packaged. 2) a parameter analyser - this is a piece of test and measurement equipment that enables the characteristics of the detectors to be measured. 3) a wire-bonder - this is a tool which allows permanent electrical connections to be made between devices on a semiconductor die and the semiconductor packaging. University of Sussex will contribute £50k in cash towards the requested equipment and also commit 20% of Barnett's time for 5 years (£207.6k including overheads and estates costs) to the development and commercialisation of the novel detectors, and to ensure that the equipment requested is properly used, managed, and maintained during and beyond the grant's lifetime.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b60144380be0de093ac299a311d4e3d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b60144380be0de093ac299a311d4e3d7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Optocap Ltd, Scottish Funding Council, Adaptix, Defence Science & Tech Lab DSTL, PhotonForce +77 partnersOptocap Ltd,Scottish Funding Council,Adaptix,Defence Science & Tech Lab DSTL,PhotonForce,MTC,Leonardo,OPTOS plc,Cascade Technologies (United Kingdom),Cascade Technologies (United Kingdom),NPL,Thales Group,Rutherford Appleton Laboratory,Optocap (United Kingdom),Heriot-Watt University,Canon Medical Research Europe Ltd,NPL,Chromacity Ltd.,Defence Science & Tech Lab DSTL,Leonardo (United Kingdom),pureLiFi Ltd,Thales Group,Heriot-Watt University,Manufacturing Technology Centre (United Kingdom),ST Microelectronics Limited (UK),Defence Science and Technology Laboratory,NHS Greater Glasgow and Clyde,SFC,Synapse,Amethyst Research (United Kingdom),Scottish Universities Physics Alliance,Optocap Ltd,Lightpoint Medical (United Kingdom),Chromacity Ltd.,Canon Medical Research Europe Ltd,NHS Greater Glasgow and Clyde,BT Group (United Kingdom),Renishaw (United Kingdom),STFC - Laboratories,Adaptix (United Kingdom),ST Microelectronics Limited (UK),BT Group (United Kingdom),EDF Energy (United Kingdom),SFC,ST Microelectronics Limited (UK),pureLiFi Ltd,AWE,Thales (United Kingdom),Oxford Lasers (United Kingdom),Gooch and Housego (Torquay) Ltd,Photon Force Ltd,EDF Energy (United Kingdom),RENISHAW,RENISHAW,SINAPSE,STFC - Laboratories,Wideblue Ltd,Gooch and Housego (Torquay) Ltd,SUPA,Cascade Technologies (United Kingdom),Heriot-Watt University,OPTOS plc,EDF Energy (United Kingdom),Science and Technology Facilities Council,Rutherford Appleton Laboratory,MTC,Gas Sensing Solutions (United Kingdom),OXFORD,Coherent (United Kingdom),National Physical Laboratory,Fraunhofer UK Research Ltd,Chromacity (United Kingdom),Atomic Weapons Establishment,Lightpoint Medical Ltd,Gas Sensing Solutions (United Kingdom),SULSA,Gas Sensing Solutions (United Kingdom),OXFORD,OPTOS plc,Wideblue Polaroid (UK) Ltd,Amethyst Research Ltd,Coherent Scotland LtdFunder: UK Research and Innovation Project Code: EP/S022821/1Funder Contribution: 5,111,550 GBPIn a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde, Edinburgh and Dundee, this proposal for an "EPSRC CDT in Industry-Inspired Photonic Imaging, Sensing and Analysis" responds to the priority area in Imaging, Sensing and Analysis. It recognises the foundational role of photonics in many imaging and sensing technologies, while also noting the exciting opportunities to enhance their performance using emerging computational techniques like machine learning. Photonics' role in sensing and imaging is hard to overstate. Smart and autonomous systems are driving growth in lasers for automotive lidar and smartphone gesture recognition; photonic structural-health monitoring protects our road, rail, air and energy infrastructure; and spectroscopy continues to find new applications from identifying forgeries to detecting chemical-warfare agents. UK photonics companies addressing the sensing and imaging market are vital to our economy (see CfS) but their success is threatened by a lack of doctoral-level researchers with a breadth of knowledge and understanding of photonic imaging, sensing and analysis, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will consolidate the UK industrial knowledge base, driving the high-growth export-led sectors of the economy whose photonics-enabled products and services have far-reaching impacts on society, from consumer technology and mobile computing devices to healthcare and security. Building on the success of our CDT in Applied Photonics, the proposed CDT will be configured with most (40) students pursuing an EngD degree, characterised by a research project originated by a company and hosted on their site. Recognizing that companies' interests span all technology readiness levels, we are introducing a PhD stream where some (15) students will pursue industrially relevant research in university labs, with more flexibility and technical risk than would be possible in an EngD project. Overwhelming industry commitment for over 100 projects represents a nearly 100% industrial oversubscription, with £4.38M cash and £5.56M in-kind support offered by major stakeholders including Fraunhofer UK, NPL, Renishaw, Thales, Gooch and Housego and Leonardo, as well as a number of SMEs. Our request to EPSRC for £4.86M will support 35 students, from a total of 40 EngD and 15 PhD researchers. The remaining students will be funded by industrial (£2.3M) and university (£0.93M) contributions, giving an exceptional 2:3 cash gearing of EPSRC funding, with more students trained and at a lower cost / head to the taxpayer than in our current CDT. For our centre to be reactive to industry's needs a diverse pool of supervisors is required. Across the consortium we have identified 72 core supervisors and a further 58 available for project supervision, whose 1679 papers since 2013 include 154 in Science / Nature / PRL, and whose active RCUK PI funding is £97M. All academics are experienced supervisors, with many current or former CDT supervisors. An 8-month frontloaded residential phase in St Andrews and Edinburgh will ensure the cohort gels strongly, and will equip students with the knowledge and skills they need before beginning their research projects. Business modules (x3) will bring each cohort back to Heriot-Watt for 1-week periods, and weekend skills workshops will be used to regularly reunite the cohort, further consolidating the peer-to-peer network. Core taught courses augmented with specialist options will total 120 credits, and will be supplemented by professional skills and responsible innovation training delivered by our industry partners and external providers. Governance will follow our current model, with a mixed academic-industry Management Committee and an independent International Advisory Board of world-leading experts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a59236e8c8683eb38a595933215d3f1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a59236e8c8683eb38a595933215d3f1a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2021Partners:e2v technologies plc, Intel (United States), Teledyne e2v (United Kingdom), British Telecommunications plc, Intel Corporation +16 partnerse2v technologies plc,Intel (United States),Teledyne e2v (United Kingdom),British Telecommunications plc,Intel Corporation,Nokia Corporation,Lancaster University,Optocap (United Kingdom),Nokia Corporation,Optocap Ltd,Intel (United States),BT Group (United Kingdom),BT Group (United Kingdom),Lancaster University,Nokia (Finland),Filtronic Plc,Nokia Corporation,Filtronic plc,e2v technologies plc,Optocap Ltd,Filtronic (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S009620/1Funder Contribution: 431,911 GBPThe extraordinary increase of wireless data traffic by smartphones and laptops, virtual reality, billions of IoTs or Industry 4.0 infrastructure need 5G, small cell densification and reduction of digital divide. High throughput connectivity everywhere is a fundamental requirement to support the growing data demand and the evolution of future wireless communication market. Affordable wireless networks with fibre data rate are needed. Wireless links with multi-gigabit (Gb/s) distribution at millimetre waves have been demonstrated up to 400 GHz. However, the strong atmosphere attenuation at the increase of frequency and limitations of the present semiconductor-based millimetre wave technology limit their potentiality. E-band wireless links with 2 GHz bandwidth and theoretical few Gb/s are already in the market, but large antenna footprint and low transmission power are probably preventing wider adoption. The portion of the spectrum above 100 GHz includes numerous wide bands which are presently unused, and could support tens of Gb/s, if adequate millimetre wave technology were available. In particular, the D-band (141 - 174.8) has about 28 GHz split in three sub-bands. The DLINK project aims to bring the UK at the forefront of millimetre wave wireless technology through the realisation of the first high capacity link at D-band with unprecedented performance, to provide 45Gb/s, over 1 km range, and with 99.99% availability in ITU rain zone K (typical of UK and Europe). The DLINK system includes a high power vacuum traveling wave tube (TWT) of new generation driven by a novel resonant tunnelling diode (RTD) transmitter with an integrated vector modulator. The system will be demonstrated in Frequency Division Duplex (FDD), with two bands of 10 GHz each to provide about 45 Gb/s data rate. The high performance of DLINK is enabled by traveling wave tubes as amplifiers, with about 10W output power, which is more than one order of magnitude than solid state amplifiers at the same frequency. The TWT working mechanism is based on the transfer of energy from a high energy electron beam, flowing in a waveguide with high level of vacuum, to the electric field generated by the input signal. No D-band TWTs are available in the market. Substantial challenges must be solved for an affordable microfabrication of mm-wave waveguides, due to small dimensions and three dimensional shapes. The transmitter will be an RTD oscillator with very low phase noise to support QAM modulation generated by an on-chip PIN diode vector modulator. The DLINK system includes two transmitters, one for each FDD channel, integrating a RTD oscillator/transmitter, a TWT and an antenna. For the first time, the property of a transmission link with 20 GHz bandwidth above 100 GHz will be investigated by field tests at BT. The DLINK project has a strong industry focus. It is a collaboration between Lancaster and Glasgow Universities with the strategic support of the wireless communication industry full chain, from devices to end users: IQE (semiconductor wafers), Filtronic (mm-wave links), Teledyne e2v (mm-wave TWT), Nokia (system manufacturer), Intel (chip manufacturer), BT (UK main network operator and end user). The high impact of the project will enable new architectures of wireless high capacity networks by mesh of high data rate links at mm-waves. The DLINK project has the ambition to fully contribute to "Connected Nation", one of the four Prosperous Outcomes and to benefit other numerous ambitions of the Prosperous Nation outcomes. DLINK involves researchers and PhD students of two leading research groups and a number of industry partners that will work together for the success of the project, with a long term strategy for future industry exploitation. A particular attention is devoted to growth of talent, improving the gender balance in the millimetre wave technology sector highlighting role models in the Lancaster and Glasgow teams.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61b37feda7f9cb62de607b2abaf4dff9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::61b37feda7f9cb62de607b2abaf4dff9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2022Partners:Seagate Technology (Ireland), VLC Photonics, Xmark Media, PLESSEY SEMICONDUCTORS LIMITED, Optocap Ltd +105 partnersSeagate Technology (Ireland),VLC Photonics,Xmark Media,PLESSEY SEMICONDUCTORS LIMITED,Optocap Ltd,Phoenix Photonics Ltd,General Electric (United Kingdom),Fibercore (United Kingdom),Torbay Development Agency TDA,OpTek Systems,Lynton Lasers Ltd,Qioptiq Ltd,CIP Technologies,Excelitas Technologies (United Kingdom),Land Instruments International Ltd,National Physical Laboratory,GASG - Gas Analysis Sensing Group,TRUMPF (United Kingdom),IS-Instruments Ltd,Seagate (United Kingdom),Atomic Weapons Establishment,The Rockley Group UK,Oclaro Technology UK,Seagate (Ireland),Qioptiq Ltd,SPI,IQE SILICON,Optocap (United Kingdom),AWE,Huawei Technologies (United Kingdom),GE Oil & Gas - Sondex Wireline,XYRATEX,OpTek Systems (United Kingdom),Oclaro Technology UK,IQE (United Kingdom),BAE Systems (UK),Xmark Media,SPI,RENISHAW,Heraeus (Germany),RENISHAW,Sharp Laboratories of Europe (United Kingdom),Hans LaserTechnology Co Ltd,IS-Instruments Ltd,Innovate UK,Phoenix Photonics Ltd,Ametek (United Kingdom),SG Controls Ltd,Glass Technology Services Ltd GTS,Glass Technology Services,BAE Systems (Sweden),Knowledge Transfer Network,Defence Science & Tech Lab DSTL,FIANIUM,European Photonics Industry Consortium,Coherent Scotland Ltd,Phoenix Photonics Ltd,BAE Systems (Sweden),University of Southampton,IQE PLC,Centre for Process Innovation Limited,Hans LaserTechnology Co Ltd,GASG - Gas Analysis Sensing Group,Land Instruments International Ltd,The Rockley Group UK,Defence Science & Tech Lab DSTL,KNOWLEDGE TRANSFER NETWORK LIMITED,[no title available],Heraeus Holdings GmbH,Glass Technology Services Ltd GTS,SEAGATE SYSTEMS,Lynton Lasers Ltd,Plessey Semiconductors Ltd,European Photonics Industry Consortium,Defence Science and Technology Laboratory,NPL,NPL,Phoenix Photonics Ltd,Fianium (United Kingdom),IS Instruments (United Kingdom),Torbay Development Agency (United Kingdom),Qinetiq (United Kingdom),Renishaw plc (UK),Coherent Scotland Ltd,EW Simulation Technology Ltd,EW Simulation Technology Ltd,SG Controls Ltd,SG Controls Ltd,CIP Technologies,Oclaro (United Kingdom),VLC Photonics,OpTek Systems,Centre for Process Innovation (Redundant,Renishaw (United Kingdom),BAE Systems (United Kingdom),Centre for Process Innovation,PLESSEY SEMICONDUCTORS LIMITED,Coherent (United Kingdom),FIANIUM,GE Oil & Gas - Sondex Wireline,University of Southampton,Seagate (United Kingdom),Optocap Ltd,Fibercore Ltd,Defence Science & Tech Lab DSTL,II VI Phonics (UK),Fibercore Ltd,II-VI Photonics (UK),Sharp Laboratories of Europe (United Kingdom),IQE SILICONFunder: UK Research and Innovation Project Code: EP/N00762X/1Funder Contribution: 10,355,500 GBPPhotonics is one of six EU "Key Enabling Technologies. The US recently announced a $200M programme for Integrated Photonics Manufacturing to improve its competiveness. As a UK response, the research proposed here will advance the pervasive technologies for future manufacturing identified in the UK Foresight report on the Future of Manufacturing, improving the manufacturability of optical sensors, functional materials, and energy-efficient growth in the transmission, manipulation and storage of data. Integration is the key to low-cost components and systems. The Hub will address the grand challenge of optimising multiple cross-disciplinary photonic platform technologies to enable integration through developing low-cost fabrication processes. This dominant theme unites the requirements of the UK photonics (and photonics enabled) industry, as confirmed by our consultation with over 40 companies, Catapults, and existing CIMs. Uniquely, following strong UK investment in photonics, we include most of the core photonic platforms available today in our Hub proposal that exploits clean room facilities valued at £200M. Research will focus on both emerging technologies having greatest potential impact on industry, and long-standing challenges in existing photonics technology where current manufacturing processes have hindered industrial uptake. Platforms will include: Metamaterials: One of the challenges in metamaterials is to develop processes for low-cost and high-throughput manufacturing. Advanced metamaterials produced in laboratories depend on slow, expensive production processes such as electron beam writing and are difficult to produce in large sizes or quantities. To secure industrial take up across a wide variety of practical applications, manufacturing methods that allow nanostructure patterning across large areas are required. Southampton hosts a leading metamaterials group led by Prof Zheludev and is well positioned to leverage current/future EPSRC research investments, as well as its leading intellectual property position in metamaterials. High-performance special optical fibres: Although fibres in the UV and mid-IR spectral range have been made, few are currently commercial owing to issues with reliability, performance, integration and manufacturability. This platform will address the manufacturing scalability of special fibres for UV, mid-IR and for ultrahigh power sources, as requested by current industrial partners. Integration with III-V sources and packaging issues will also be addressed, as requested by companies exploiting special fibres in laser-based applications. In the more conventional near-infrared wavelength regime, we will focus on designs and processes to make lasers and systems cheaper, more efficient and more reliable. Integrated Silicon Photonics: has made major advances in the functionality that has been demonstrated at the chip level. Arguably, it is the only platform that potentially offers full integration of all the key components required for optical circuit functionality at low cost, which is no doubt why the manufacturing giant, Intel, has invested so much. The key challenge remains to integrate silicon with optical fibre devices, III-V light sources and the key components of wafer-level manufacture such as on line test and measurement. The Hub includes the leading UK group in silicon photonics led by Prof Graham Reed. III-V devices: Significant advances have been made in extending the range of III-V light sources to the mid-IR wavelength region, but key to maximise their impact is to enable their integration with optical fibres and other photonics platforms, by simultaneous optimisation of the III-V and surrounding technologies. A preliminary mapping of industrial needs has shown that integration with metamaterial components optimised for mid-IR would be highly desirable. Sheffield hosts the EPSRC III-V Centre and adds a powerful light emitting dimension to the Hub.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1ccff9f5a162a9a6207a689e632e4b2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1ccff9f5a162a9a6207a689e632e4b2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2021Partners:University of Salford, Optocap Ltd, University of Glasgow, Rolls-Royce (United Kingdom), Rolls-Royce (United Kingdom) +12 partnersUniversity of Salford,Optocap Ltd,University of Glasgow,Rolls-Royce (United Kingdom),Rolls-Royce (United Kingdom),INEX Microtechnology Ltd,Optocap (United Kingdom),University of Glasgow,University of Manchester,Rolls-Royce Plc (UK),memsstar Technology,memsstar Technology,memsstar Technology,The University of Manchester,Rolls-Royce (United Kingdom),Optocap Ltd,INEX Microtechnology LtdFunder: UK Research and Innovation Project Code: EP/R024413/1Funder Contribution: 573,385 GBPThis proposal straddles two key topics, High Temperature (HT) Electronics and Power Electronics. Present electronics is silicon-based and therefore limited to maximum operating junction temperatures of less than 150 degC, which gives a maximum ambient ceiling of around 105 degC. Commercially available components (rated for operation at elevated temperature) are in the range of 210-225 degC maximum. Therefore electronics for the automotive sector, especially for the emerging electric vehicles, and the aerospace sector is kept as far from the engine as possible to minimise the cooling requirements. Similarly, oil and gas engineers, attempting to harvest the fossil fuels (which we are still highly dependent on), face exactly the same problem with the electronics that are driving the drilling tool motor. Power electronic devices delivering hundreds of Watts of power to the motor must do so in an ambient that can exceed 225 degC, operating 10 km or deeper under the ground with only slurry pumped from the surface to cool the devices (temperature and time restrictions apply). The potential benefit for having electronics operating in these environments without cooling is huge, leading to greater efficiency, reliability, saving space, weight and importantly cost. Power Electronics plays a very important role in the electrical power conversion and is widely used in transportation, renewable energy and utility applications. By 2020, 80% of electrical power will go through power electronics converters somewhere between generation, transmission, distribution and consumption. So high-efficiency, high-power-density and high-reliability are very important for power electronics converters. The conventional Si-based power electronics devices have, however, reached the limit of their potential (after almost 40 years of development). The emergence of wide-bandgap material such as silicon carbide (SiC) and gallium nitride (GaN) based devices has brought in clear opportunities enabling compact, more efficient power converters, operating at higher voltages, frequencies and powers, and harsh environments (e.g. 300 degC ambients) and so can meet the increasing demand by a range of existing and emerging applications. Advances in GaN device structure and in process technology to significantly improve performance are pushing the adoption of these new power devices for very high voltage (>600 V), high temperature (>125 degC) and high power (mainly 6-40kW) applications. This trend is set to continue as the technology evolves. For 600V operation, a threshold voltage +3V would be desirable (well above the +1.6V maximum now achievable) for improved noise immunity. Also, presently, the device architecture compromises converter performance, e.g. in a half-bridge power converter module the current through the top switch transistor is modulated by its floating substrate potential. When this deficiency can be solved, the two transistors of the basic building block of all power electronic systems can be manufactured as a single integrated circuit reducing switching path inductance thus allowing faster switching and smaller cheaper passive components, increasing switch yield per wafer for the small devices targeted and reducing packaging costs. Reliable packaging methods for the new devices and ICs are indispensable for the required testing during development, and for the eventual exploitation in industrial HPHT applications. The required materials and joining methods at >300 degC ambient environments are completely different from those of conventional electronics, and need to be developed. These challenges with HT electronics and GaN switches/packaging form the main motivations for this project. The project brings together the UK's key academic and industrial expertise to work in synergy to investigate HT packaging and GaN power devices to realise a robust and high performance High Power High Temperature (HPHT) technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dd01b40bc160df56f091a2aeb5e69888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::dd01b40bc160df56f091a2aeb5e69888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right