Powered by OpenAIRE graph
Found an issue? Give us feedback

Manufacturing Technology Centre (United Kingdom)

Manufacturing Technology Centre (United Kingdom)

94 Projects, page 1 of 19
  • Funder: UK Research and Innovation Project Code: EP/Y03466X/1
    Funder Contribution: 6,261,280 GBP

    This user-need CDT will equip graduates with the skills needed by the UK formulation industry to manufacture the next generation of formulated products at net zero, addressing the decarbonisation needs for the sector and aligning with this EPSRC priority. Formulated products, including foods, battery electrodes, pharmaceuticals, paints, catalysts, structured ceramics, thin films and coatings, cosmetics, detergents and agrochemicals, are central to UK prosperity (sector size > £95bn GVA in 2021) and Formulation Engineering is concerned with the design and manufacture of these products whose effectiveness is determined by the microstructure of the material. Containing complex soft materials: structured solids, soft solids or structured liquids, whose nano- to micro-scale physical and chemical structures are highly process dependent and critical to product function, their manufacture poses common challenges across different industry sectors. Moving towards Net Zero manufacture thus needs systems thinking underpinned by interdisciplinary understanding of chemistry, processing and materials science pioneered by the CDT for Formulation Engineering at the University of Birmingham over the past twenty years, with a proven delivery of industrial impact evidenced by our partner's letters of support and three Impact Case Studies ranked at 4* in the recent Research Excellence Framework in 2021. A new CDT strategy has been co-created with our industry partners, where we address new user-led research challenges through our theme of Formulation for Net Zero ('FFN0), articulated in two research areas: 'Manufacturing Net Zero (MN0)', and 'Towards 4.0rmulation'. Formulation engineering is not taught in first degree courses, so training is needed to develop the future leaders in this area. This was the industry need that led to the creation of the CDT in Formulation Engineering, based within the School of Chemical Engineering at Birmingham. The CDT leads the field: we won for the University one of the 2011 Diamond Jubilee Queen's Anniversary Prizes, demonstrating the highest national excellence. The UK is a world-leader in Formulation; many multinational formulation companies base research and manufacture in the UK, and the supply of trained graduates, and open innovation research partnerships facilitated by the CDT are critical to their success. The CDT receives significant industry funding (>£650k pa), supported by 31 industry partners including multinationals: P&G, Colgate, Unilever, Diageo, Devro, Fonterra, Samworth Bros., Jacobs Douwe Egberts, Nestle, Pepsico, Mondelez, GSK, AZ, Lonza, Novartis, BMS, BASF, Celanese, Croda, Innospec, Linde/BOC, Origen, Imerys, Johnson Matthey, Rolls-Royce/HTRC, JLR Lucideon and SMEs: Aquapak, CALGAVIN and ITS/StreamSensing. Intra and cross cohort training is central to our strategy, through our taught programme and twice-yearly internal conferences, industry partner-led regional research meetings, student-led technical and soft skills workshops and social events and inter CDT meetings. We have embedded diversity and inclusion into all of our projects and processes, including blind CV recruitment. Since 2018 our cohorts have been > 50% female and >35% BAME. We will co-create training and research partnerships with other CDTs, Catapult Centres, and industry, and train at least 50 EngD and PhD graduates with the skills needed to enhance the UK's leading international position in this critical area. The taught programme delivers a common foundation in formulation engineering, specialist technical training, modules on business, entrepreneurship and soft skills including a course in Responsible Research in Formulation. We have obtained promises of significant industry and University funding, with 67 offers of projects already. EPSRC costs will be 44% of the cash total for the CDT, and ca. £27% of the whole cost when industry in-kind funding is included.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y015215/1
    Funder Contribution: 3,076,010 GBP

    The electronics industry "ElecTech" sector is central to the UK's future economy, environment, and society. With over 1 million employees in sectors enabled by electronics, the contribution of electronic technologies is indispensable. At the heart of electronics are nanoelectronic semiconductor "chips", and it has a leading position in semiconductor intellectual property vendors and emerging areas such as quantum technologies, sustainable electronics manufacturing, and compound semiconductors. The UK's potential lies, and where its future role in the global semiconductor value chain lies, as evidenced in the BEIS committee inquiry. We will establish an Automated Nano AnaLysing, characterisatiOn and additive packaGing sUitE (ANALOGUE) suite. ANALOGUE will be an exemplary facility that provides a fully automated platform for semiconductor processing, from devices to applications, with centralised workflow design, data collection/capture and real-time analytics. ANALOGUE will enable wafer-scale fully automated electrical characterisation of devices including reliability and temperature cycling capabilities. A fully automated back-end processing platform is integrated enabling die- and wire-bonding, 3D printed electronics and additive heterogenous packaging, co-located with high-resolution printed circuit laser patterning. Co-located with the £35M James Watt Nanofabrication Centre (JWNC), and the Centre for Advanced Electronics (CAE), the facility will enable devices-to-systems across the ICT spectrum, towards a user-centric and responsible design approach for electronics manufacturing. With a team representing two application-oriented user groups, medical and industrial nanoelectronics, we will create an ecosystem whereby manufacturing, users, and circular economy experts are brought together as users of ANALOGUE. ANALOGUE will support research on implantables, wearables, and diagnostics, through ultrasonic devices. Embedding sustainable manufacturing and onshoring the research into the backend processes of electronics is crucial to meeting the requirements of future electronics design flows. Original Equipment Manufacturers (OEM) buyers like Apple are already demanding commitments from suppliers to decarbonise their products, with distributors expected to assess each product's environmental impact throughout its lifecycle - from design and manufacture to end-of-life. As such, ANALOGUE allows UK researchers to explore the "black-box" of the semiconductor supply chain using automated characterisation and heterogenous packaging, encompassed by an automation and data collection framework for evaluating the efficacy of our experimental workflows. ANALOGUE will be accessible to the UK's research community across HealthTech, Beyond-Moore Computing, and Circular and Sustainable Electronics. Owing to its automated and streamlined nature, ANALOGUE will allow users from different institutions to utilise the suite remotely, facilitated by expert technical support, enabling rapid innovation across the nanoelectronics spectrum, insulating the UK's electronics research eco-system from global supply chain interruptions, e.g. chip shortages, and underpinning new research into otherwise offshore aspects of the electronics manufacturing. ANALOGUE builds on the UK's internationally acknowledged strengths in low-power IC Design, electronic materials, and applications in sustainable manufacturing. The Glasgow collaboration as an essential link in the supply chain linking materials producers (e.g., IQE), designers (Arm) manufacturers (PragmatIC Semiconductors, Printed Electronics, MTC), with academic users. The ANALOGUE team will regularly engage with these stakeholders through joint projects, meetings, workshops, and targeted events. The alignment of the proposal with the strategic sustainable systems focus of UofG will also help the envisaged research's long-term planning and strategy building.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022821/1
    Funder Contribution: 5,111,550 GBP

    In a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde, Edinburgh and Dundee, this proposal for an "EPSRC CDT in Industry-Inspired Photonic Imaging, Sensing and Analysis" responds to the priority area in Imaging, Sensing and Analysis. It recognises the foundational role of photonics in many imaging and sensing technologies, while also noting the exciting opportunities to enhance their performance using emerging computational techniques like machine learning. Photonics' role in sensing and imaging is hard to overstate. Smart and autonomous systems are driving growth in lasers for automotive lidar and smartphone gesture recognition; photonic structural-health monitoring protects our road, rail, air and energy infrastructure; and spectroscopy continues to find new applications from identifying forgeries to detecting chemical-warfare agents. UK photonics companies addressing the sensing and imaging market are vital to our economy (see CfS) but their success is threatened by a lack of doctoral-level researchers with a breadth of knowledge and understanding of photonic imaging, sensing and analysis, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will consolidate the UK industrial knowledge base, driving the high-growth export-led sectors of the economy whose photonics-enabled products and services have far-reaching impacts on society, from consumer technology and mobile computing devices to healthcare and security. Building on the success of our CDT in Applied Photonics, the proposed CDT will be configured with most (40) students pursuing an EngD degree, characterised by a research project originated by a company and hosted on their site. Recognizing that companies' interests span all technology readiness levels, we are introducing a PhD stream where some (15) students will pursue industrially relevant research in university labs, with more flexibility and technical risk than would be possible in an EngD project. Overwhelming industry commitment for over 100 projects represents a nearly 100% industrial oversubscription, with £4.38M cash and £5.56M in-kind support offered by major stakeholders including Fraunhofer UK, NPL, Renishaw, Thales, Gooch and Housego and Leonardo, as well as a number of SMEs. Our request to EPSRC for £4.86M will support 35 students, from a total of 40 EngD and 15 PhD researchers. The remaining students will be funded by industrial (£2.3M) and university (£0.93M) contributions, giving an exceptional 2:3 cash gearing of EPSRC funding, with more students trained and at a lower cost / head to the taxpayer than in our current CDT. For our centre to be reactive to industry's needs a diverse pool of supervisors is required. Across the consortium we have identified 72 core supervisors and a further 58 available for project supervision, whose 1679 papers since 2013 include 154 in Science / Nature / PRL, and whose active RCUK PI funding is £97M. All academics are experienced supervisors, with many current or former CDT supervisors. An 8-month frontloaded residential phase in St Andrews and Edinburgh will ensure the cohort gels strongly, and will equip students with the knowledge and skills they need before beginning their research projects. Business modules (x3) will bring each cohort back to Heriot-Watt for 1-week periods, and weekend skills workshops will be used to regularly reunite the cohort, further consolidating the peer-to-peer network. Core taught courses augmented with specialist options will total 120 credits, and will be supplemented by professional skills and responsible innovation training delivered by our industry partners and external providers. Governance will follow our current model, with a mixed academic-industry Management Committee and an independent International Advisory Board of world-leading experts.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N022998/1
    Funder Contribution: 329,977 GBP

    Summary Mass finishing [MF] describes the numerous range of processes used to modify and enhance the surfaces of engineered parts by immersion in a fluidized circulatory flow of loose abrasive media. There are many different types of MF operations in use including: vibratory, tumbling and centrifugal disk which are responsible for material removal and the range of finishing actions from surface cleaning to deburring, often imparting a smooth, lustrous finish. The MF process is particularly suitable for irregular shaped parts and/or large batch sizes and is gaining widespread acceptance as a critical operation for super-finishing components in the fields of aerospace, auto-sport, biomedical and space industry engineering. However, the process has attracted only little research and as a result the potential of the process is far from being fully exploited and current design practices tend to be empirical, strongly reliant on user experience and expertise. The aim of this study is to improve: (i) understanding of particle kinematics, (ii) process performance and capability, and (iii) evolution of surface finish thus adding a scientific basis, presently lacking. This proposed research will be the first to include study of the highly efficient Drag finishing regime wherein a part is 'dragged' through static media at high speed. A major feature of the work will be the discrete element modelling programme, the outcomes of which will have strong generic relevance to the wider areas of fluidized and bulk particle/ granular flows. Given the absence of any major UK or European research effort in this field, a key aim will to be to establish, at LJMU, a unit of expertise in MF that will act as a knowledge warehouse and a conduit for dissemination of best practice and which and will seek to contribute to regional and national strategic planning aimed at promoting and sustaining economic growth in manufacturing industry. The aims of this research are as follows: to secure and deliver to industry the necessary scientific grounding required to advance and exploit the MF process to gain new understanding of impact, wear and surface evolution phenomenon in MF processes to develop a tribological based abrasion model for mass finishing to found a 3-D DEM capability for simulation of vibratory-fluidized flows to establish at LJMU a demonstrator facility directed at key application areas To achieve these goals a world class partnership of experts are brought together coupling manufacturing knowledge with academic and technical expertise including the high value manufacturing catapult, the MTC, and the rapidly progressing joint initiative: MTC@LJMU. Funding support from EPSRC will help ensure that UK industry and academia lead the world in this rapidly developing and important technology. The planned outreach programme will strengthen this action of dissemination to, and engagement with, industry, and serve to coordinate the knowledge transfer.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V027050/1
    Funder Contribution: 19,903,400 GBP

    The decarbonisation of industrial clusters is of critical importance to the UK's ambitions of cutting greenhouse gas emissions to net zero by 2050. The UK Industrial Decarbonisation Challenge (IDC) of the Industrial Strategy Challenge Fund (ISCF) aims to establish the world's first net-zero carbon industrial cluster by 2040 and at least one low-carbon cluster by 2030. The Industrial Decarbonisation Research and Innovation Centre (IDRIC) has been formed to support this Challenge through funding a multidisciplinary research and innovation centre, which currently does not exist at the scale, to accelerate decarbonisation of industrial clusters. IDRIC works with academia, industry, government and other stakeholders to deliver the multidisciplinary research and innovation agenda needed to decarbonise the UK's industrial clusters. IDRIC's research and innovation programme is delivered through a range of activities that enable industry-led, multidisciplinary research in cross-cutting areas of technology, policy, economics and regulation. IDRIC connects and empowers the UK industrial decarbonisation community to deliver an impactful innovation hub for industrial decarbonisation. The establishment of IDRIC as the "one stop shop" for research and innovation, as well as knowledge exchange, regulation, policy and key skills will be beneficial across the industry sectors and clusters. In summary, IDRIC will connect stakeholders, inspire and deliver innovation and maximise impact to help the UK industrial clusters to grow our existing energy intensive industrial sectors, and to attract new, advanced manufacturing industries of the future.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.