Powered by OpenAIRE graph
Found an issue? Give us feedback

Scottish and Southern Energy SSE plc

Country: United Kingdom

Scottish and Southern Energy SSE plc

52 Projects, page 1 of 11
  • Funder: UK Research and Innovation Project Code: NE/X008835/1
    Funder Contribution: 547,188 GBP

    By 2050 it's estimated >400 GW of energy will be gathered by offshore wind across the whole North Sea. For scale, Hinkley Point C nuclear reactor is projected to produce 3.2 GW. How will this increased anthropogenic use of our coastal seas impact already stressed marine ecosystems? And how will that same production of renewable energy offset risks of extreme climate change that, left unchecked, will increase the risk of biodiversity declines. There are many complex changes to ecosystems linked to Offshore Wind Farms (OWFs) that we need to understand now, so that the extent of increasing wind energy extraction further offshore is managed in the most sustainable way. An important effect of large wind energy extraction will be to reduce the amount of energy that would normally go into local ocean currents via surface stress, altering sea state and mixing. Conversely, there will be local increases in turbulence around turbine structures and seabed scouring near fixed foundations. Any change in ocean mixing may change the timing, distribution and diversity of phytoplankton primary production, the base of the food chain for marine ecosystems, to some degree. This has knock-on-effects on the diversity, health and locations of pelagic fish that are critical prey species of commercial fish, seabirds and marine mammals. Observed changes caused by operational OWFs in the southern North Sea include local surface temperature rise and the displacement of seabirds and fishing fleets from the OWF footprint, whereas seals often appear to be feeding near turbines. All of these changes have a linked component - important prey fish species - which are likely to aggregate near structures (as seen at other offshore platforms). Seabirds and fishing fleets subsequently have less space to hunt, with potentially increased competition for fish. However, if OWFs are also de facto marine protected areas and so positively affect local primary production, they may provide good habitat for fish population growth. So, what are the cumulative effects of current OWF developments and the thousands of additional planned structures? Do the physical, biogeochemical and ecosystem changes exacerbate or mitigate those resulting from climate change? As OWFs migrate further offshore as floating structures, how can current knowledge based on shallow, coastal fixed turbines be suitably extrapolated to understand the impacts on ecosystems dependent on seasonal cycles that are typical of deeper waters? PELAgIO will address all of these questions through an interdisciplinary, multi-scale observation and modelling framework that spans physical mixing through to plankton production, on to the response of fish and whole ecosystems. We will collect fine-scale data using the latest multi-instrumented acoustic platforms set beside and away from OWFs, complemented by autonomous surface and submarine robots to capture continuous and coincident data from physics to fish, over multiple scales and seasons to fully understand what is 'different' inside an OWF and how big its footprint is. These new data will test the effects on seabirds and marine mammals to build an OWF ecosystem parameterization that accounts for changes to mixing and wind deficit impacts, and is scalable to next-generation OWFs. This bottom-up, comprehensive approach will enable true calibration and validation of 3D ocean-biogeochemical-sediment modelling systems, from the scale of turbine foundations up to the regional and even cross-shelf scales. Identified changes will be integrated into Bayesian ecosystem models that enable the cumulative effects of ecological, social and economic trade-offs of different policy approaches for OWFs to be quantifiably assessed for present day conditions, during extreme events and under climate change.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K036033/1
    Funder Contribution: 236,177 GBP

    Carbon capture and storage (CCS) has emerged as a promising means of lowering CO2 emissions from fossil fuel combustion. However, concerns about the possibility of harmful CO2 leakage are contributing to slow widespread adoption of the technology. Research to date has failed to identify a cheap and effective means of unambiguously identifying leakage of CO2 injected, or a viable means of identifying ownership of it. This means that in the event of a leak from a storage site that multiple operators have injected into, it is impossible to determine whose CO2 is leaking. The on-going debate regarding leakage and how to detect it has been frequently documented in the popular press and scientific publications. This has contributed to public confusion and fear, particularly close to proposed storage sites, causing the cancellation of several large storage projects such as that at Barendrecht in the Netherlands. One means to reduce public fears over CCS is to demonstrate a simple method which is able to reliably detect the leakage of CO2 from a storage site and determine the ownership of that CO2. Measurements of noble gases (helium, neon, argon, krypton and xenon) and the ratios of light and heavy stable isotopes of carbon and oxygen in natural CO2 fields have shown how CO2 is naturally stored over millions of years. Noble gases have also proved to be effective at identifying the natural leakage of CO2 above a CO2 reservoir in Arizona and an oil field in Wyoming and in ruling out the alleged leakage of CO2 from the Weyburn storage site in Canada. Recent research has shown amounts of krypton are enhanced relative to those of argon and helium in CO2 captured from a nitrate fertiliser plant in Brazil. This enrichment is due to the greater solubility of the heavier noble gases, so they are more readily dissolved into the solvent used for capture. This fingerprint has been shown to act as an effective means of tracking CO2 injected into Brazilian and USA oil fields to increase oil production. Similar enrichments in heavy noble gases, along with high helium concentrations are well documented in coals, coal-bed methane and in organic rich oil and gas source rocks. As noble gases are unreactive, these enrichments will not be affected by burning the gas or coal in a power station and hence will be passed onto the flue gases. Samples of CO2 obtained from an oxyfuel pilot CO2 capture plant at Lacq in France which contain helium and krypton enrichments well above atmospheric values confirm this. Despite identification of these distinctive fingerprints, no study has yet investigated if there is a correlation between them and different CO2 capture technologies or the fossil fuel being burnt. We propose to measure the carbon and oxygen stable isotope and noble gas fingerprint in captured CO2 from post, pre and oxyfuel pilot capture plants. We will find out if unique fingerprints arise from the capture technology used or fuel being burnt. We will determine if these fingerprints are distinctive enough to track the CO2 once it is injected underground without the need of adding expense artificial tracers. We will investigate if they are sufficient to distinguish ownership of multiple CO2 streams injected into the same storage site and if they can provide an early warning of unplanned CO2 movement out of the storage site. To do this we will determine the fingerprint of CO2 captured from the Boundary Dam Power Plant prior to its injection into the Aquistore saline aquifer storage site in Saskatechwan, Canada. By comparing this to the fingerprint of the CO2 produced from the Aquistore monitoring well, some 100m from the injection well, we will be able to see if the fingerprint is retained after the CO2 has moved through the saline aquifer. This will show if this technique can be used to track the movement of CO2 in future engineered storage sites, particularly offshore saline aquifers which will be used for future UK large volume CO2 storage.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L001039/1
    Funder Contribution: 1,005,770 GBP

    The project will provide strategic insights regarding the integration of the transport sector into future low carbon electricity grids, and is inspired by limitations in current grid investment, operation and control practices as well as regulation and market operation, which may prevent an economically and environmentally effective transition to electric mobility. Although various individual aspects of the operation of electricity systems within an integrated transport sector have received some research attention, integrated planning of the grid, EV charging infrastructure and ICT (information and communication technologies) infrastructure design have not been addressed yet. In this proposal we propose to tackle these challenges in an integrated manner. At the heart of our proposal is a whole systems approach. It recognises the need to consider: EV demand and flexibility, electricity network operation and design, charging infrastructure operation and investment, ICT requirements and business models for electric mobility. This is essential when considering constraints imposed by the network on EV charging, and in return the requirements imposed by EVs on the system design and operation. This research will place emphasis on future energy scenarios relevant to the UK and China, but the tools, methods and technologies we develop will have wider applications. Specifically, a number of infrastructure planning related challenges for the massive rollout of EV have yet to be comprehensively investigated. First, traditional models of the travel of vehicles are based on the statistical prediction of aggregate-level travel demand without capturing the behavioural characterisation of users' driving requirements and preferences. Hence, this project will investigate new alternative activity-based travel demand models capturing in a bottom-up approach the behavioural basis of individual users' decisions regarding participation in activities yielding driving needs, behavioural aspects related to EV adoption and alternative EV charging strategies, as well as the characteristics of EV and the charging infrastructure. Unlike the existing models that analyse the EV impacts on isolated sectors of the power system, this project will assess economic effects on generation, transmission and distribution sectors simultaneously and subsequently reveal trade-offs between the cost and benefit streams of different EV charging strategies for different actors in the electricity chain. Furthermore, the closely related problem of EV charging infrastructure and ICT infrastructure planning -which has a central role in the massive EV rollout- has been almost completely neglected. This research project will examine novel risk-constrained stochastic optimization approaches in order to address the challenge of strategically investing in EV recharging and ICT infrastructures ahead of need, and will analytically investigate the interdependence between the power systems and EV enabling infrastructure planning. This project will also investigate alternative business models for the EV market integration and will propose a framework providing the opportunity for EVs to simultaneously support more efficient system operation and investment in assets across the entire electricity system chain. This research will formulate a new decentralised, market-based planning mechanism appropriate for deregulated power system environment and enable the investigation of the impact of alternative market designs and arrangements on the cost effectiveness of EV integration. Finally, a set of comprehensive use cases employing tools and methodologies developed in the project will be employed to understand the role and the importance of electric mobility in future UK and China low carbon systems and produce a suitable commercial and regulatory framework and a set of policy recommendations on ways of supporting the optimal deployment of EV infrastructure.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T023112/1
    Funder Contribution: 1,445,830 GBP

    This project evaluates the potential of Seasonal Thermal Energy Storage (STES) systems to facilitate the decarbonisation of heating and cooling while at the same time providing flexibility services for the future net-zero energy system. The Committee on Climate Change's recent report highlighted that a complete decarbonisation of the building, industry and electricity sectors is required to reach net-zero. Current estimates are that 44% of the total energy demand in the UK is due to heat demand which has large seasonal variations (about 6 times higher in winter compared to summer) and high morning peak ramp-up rates (increase in heat demand is 10 times faster than the increase in electricity demand). Currently, around 80% of the heat is supplied through the natural gas grid which provides the flexibility and capacity to handle the large and fast variations but causes large greenhouse gas emissions. While cooling demand is currently very small in the UK, it is expected to increase significantly: National Grid estimates an increase of up to 100% of summer peak electricity demand due to air conditioning by 2050. In countries such as Denmark, district energy systems with Seasonal Thermal Energy Storage (STES) are already proving to be affordable and more sustainable alternatives to fossil fuel-based heating that are able to handle the high ramp-up rates and seasonal variations. However, the existing systems are usually designed and operated independently from the wider energy system (electricity, cooling, industry and transport sectors), while it has been shown that the best solution (in terms of emissions reduction and cost) can only be found if all energy sectors are combined and coordinated. In particular, large STES systems which are around 100 times cheaper per installed kWh compared to both electricity and small scale domestic thermal storage, can unlock synergies between heating and cooling demand on one side, and industrial, geothermal and waste heat, and variable renewable electricity generation on the other side. However, the existing systems cannot be directly translated to the UK due to different subsurface characteristics and different wider energy system contexts. In addition, the multi-sector integration is still an open challenge due to the complex and nonlinear interactions between the different sectors. This project will develop a holistic and integrated design of district energy systems with STES by considering the interplay and coordination between energy supply and demand, seasonal thermal storage characteristics, and regulation and market frameworks. The results and models from the individual areas will be combined in a whole system model for the design and operation of smart district energy systems with STES. The whole system model will be used to develop representative case studies and guidelines for urban, suburban and campus thermal energy systems based around the smart integration of STES systems. The results will enable the development and deployment of low carbon heating and cooling systems that provide affordable, flexible and reliable thermal energy for the customers while also improving the utilisation of the grid infrastructure and the integration of renewable generation assets and other heat sources.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S032622/1
    Funder Contribution: 1,012,010 GBP

    Energy Storage (ES) has a key role to play as a part of whole UK and global energy systems, by providing flexibility, enhancing affordability, security and resilience against supply uncertainties, and addressing the huge challenges related to the climate change. Following UKRI investment over the last decade, the UK is in a strong position internationally in ES research and innovation. Although areas of UK expertise are world leading, there is little interaction between these areas and interplaying disciplines e.g. artificial intelligence, data and social sciences. This fragmentation limits the community's ability to deliver significant societal impact and threatens the continuity of delivering research excellence, missing opportunities as a result. Consequently, there is now an urgent need for the ES community to connect, convene and communicate more effectively. The proposed Supergen Storage Network Plus 2019 project (ES-Network+) responds to this need by bringing together 19 leading academics at different career stages across 12 UK institutions, with complementary energy storage (ES) related expertise and the necessary multidisciplinary balance to deliver the proposed programme. The aim of the ES-Network+ is to create a dynamic, forward-looking and sustainable platform, connecting and serving people from diverse backgrounds across the whole ES value chain including industry, academia and policymakers. As a focal point for the ES community, we will create, exchange and disseminate ES knowledge with our stakeholders. We will nurture early career researchers (ECR) in ES and establish ambitious, measurable goals for equality, diversity and inclusion (EDI). We will complement existing activities (e.g. Faraday Institution, UKERC, Energy Systems Catapult, CREDS, other Supergen Hubs) to serve the UK's needs, delivering impact nationally and internationally. The ES-Network+ will convene and support the ES community to deliver societal impact through technological breakthroughs, generating further value from the UKRI ES portfolio. It will be a secure and inclusive eco-system for researchers in ES & related fields to access, innovate, build and grow their UK and international networks. It is distinctive from the current Supergen Storage Hub: We have a PI with non-electrochemical background, an expanded investigator team with complementary expertise in energy network integration, mechanical and inter-seasonal thermal ES, hybrid storage with digital knowledge, cold storage, transport with ES integration, ES materials measurement & imaging and social science with policy implications. Early career researchers will hold key positions within the ES-Network+ and we will underpin all of our work with EDI values. We will develop an authoritative whitepaper for steering ES related decision-making, giving an overview of the ES community and a technical view on how ES research should be steered going forward. The team is extremely well-connected to the ES industry and the wider energy community and has secured 57 supporting organisations, including energy production, transmission, distribution & network operation, specialist aggregators of heat & power, storage technology developers and integrators; ES related manufacturers, ES related recycling; and research institutes/centres/hubs/networks/associations both nationally and internationally. The supporting organisations also bring in a significant amount of extra resources to ensure a successful delivery of the ES-Network+.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.