Powered by OpenAIRE graph
Found an issue? Give us feedback

OSRAM GMBH

Country: Germany
13 Projects, page 1 of 3
  • Funder: European Commission Project Code: 316906
    more_vert
  • Funder: European Commission Project Code: 633192
    Overall Budget: 3,157,990 EURFunder Contribution: 3,157,990 EUR

    Lithography based additive manufacturing technologies (L-AMT) are capable of fabricating parts with excellent surface quality, good feature resolution and precision. ToMax aims at developing integrated lithography-based additive manufacturing systems for the fabrication of ceramic parts with high shape complexity. The focus of the project is to unite industrial know-how in the field of software development, photopolymers and ceramics, high-performance light-sources, system integration, life cycle analysis, industrial exploitation and rewarding end-user cases. The consortium will provide 3D-printers with high throughput and outstanding materials and energy efficiency. The project is clearly industrially driven, with 8 out of 10 partner being SMEs or industry. Targeted end-use applications include ceramics for aerospace engineering, medical devices and energy efficient lighting applications. The consortium is aiming to exploit disruptive applications of L-AMT by developing process chains beyond the current state of the art, with the dedicated goal to provide manufacturing technologies for European Factories of the Future. By relying on L-AMT, ToMax the following objectives are targeted: (1) ToMax will provide methods which are 75% more material efficient with respect to traditional manufacturing (2) Are 25% more material efficient with respect to current AMT approaches by using computational modelling to optimize geometries and by providing recyclable wash-away supports. (3) ToMax will provide methods which are 35% more energy efficient that current AMT approaches by developing 50% faster thermal processing procedures. (4) Incorporate recycling for the first time in L-AMT of engineering ceramics Overall, the consortium will provide innovative, resource efficient manufacturing processes. ToMax will develop energy-efficient machinery and processes, with a focus on manufacturing of alumina, silicon nitride and cermet parts with high shape complexity.

    more_vert
  • Funder: European Commission Project Code: 606105
    more_vert
  • Funder: European Commission Project Code: 257550
    more_vert
  • Funder: European Commission Project Code: 676455
    Overall Budget: 507,278 EURFunder Contribution: 507,278 EUR

    Europe has a strong position in the fast-growing photonics and lighting industry but has to face the fast technological changes and, most importantly, a demand for larger transfer from research to industrial innovation and application. With the introduction of Solid State Lighting (SSL) new targets of energy efficiency were set and smart lighting technology was boosted. SCENEUNDERLIGHT leverages the privileged role of Europe in photonics as well as in smart lighting technologies. We propose 1. training of early stage researchers, who would become future experts in computer vision and lighting technologies, 2. first-class research, to push the state-of-the-art of computer vision and to drive the changes of lighting technologies, and 3. new disruptive products in smart lighting to accelerate the technological transfer from academia to industry. The proposed program will make efforts on systems for energy saving, towards a more sustainable greener Europe. We plan to implement this directive by smart lighting, defining new disruptive light management system technologies. Our planned demonstrator will take long-term time-lapse top-view images of the environment, understanding it by means of computer vision algorithms and controlling lights, for optimal lighting and energy saving. This will proceed via estimating the scene illumination properties (3D structure, material of objects and light source positions) and its use, with respect to the activities of the people. Finally, all research results will converge into the creation of an “invisible light switch”: users moving within an environment (e.g. warehouse with multiple aisles) will have the feeling that all of it is lit (e.g. switching lights on in an aisle just before the person turns into it), while the system will actually manage lighting to save energy, switching off those which the user cannot see, as for an “energy saving in the invisible”.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.