Powered by OpenAIRE graph
Found an issue? Give us feedback

IRIS

INSTITUT DE RECHERCHES INTERNATIONALES SERVIER
Country: France
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
32 Projects, page 1 of 7
  • Funder: French National Research Agency (ANR) Project Code: ANR-10-EQPX-0008
    Funder Contribution: 5,998,560 EUR
    more_vert
  • Funder: European Commission Project Code: 777072
    Overall Budget: 5,550,680 EURFunder Contribution: 5,250,680 EUR

    Stroke is the number one cause of disability in the Western world and the 3rd most common cause of death. Despite new treatment options with intra-arterial thrombectomy, still 2 out of 3 patients still have a poor outcome. The main goal of INSIST is to advance treatments of ischemic stroke and its introduction in clinical practice by realizing in silico clinical stroke trials in which stroke and treatment are modeled. We will generate virtual populations of stroke patients, generate and validate in silico models for intra-arterial thrombectomy, thrombosis and thrombolysis, and microvascular perfusion and neurological deterioration after stroke, and integrate the in silico models to realize an in silico clinical stroke trial. We are uniquely positioned by the availability of a large pool of clinical, imaging, histopathological, and outcome data from multiple recently finalized stroke trials, a large registry (totaling 4500 patients), and new trials that will start later this year (totaling 2500 patients). We will build a population model that takes this input to generate virtual populations of stroke patients addressing the wide variety of patient characteristics. We will build on existing and emerging in silico models to validate reusable models for stroke and stroke treatment with a strong interaction with experimenting modeling in laboratories. The in silico models and virtual populations will be combined to simulate clinical trials and validated by simulating and comparing finalized and currently running trials. The in silico models will be used to simulate clinical trials to evaluate effectiveness and safety of novel devices and medication, both for the device as well as the pharmacological industry. For the device industry, we will evaluate the optimal configuration of thrombectomy stents for reduction of thrombus fragmentation. From the perspective of the pharmacy industry, we will simulate the effect of increased TAFIa on the effectiveness of alteplase.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-17-RHUS-0009
    Funder Contribution: 8,610,480 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-23-RHUS-0002
    Funder Contribution: 941,941 EUR
    more_vert
  • Funder: European Commission Project Code: 667837
    Overall Budget: 6,000,000 EURFunder Contribution: 5,250,000 EUR

    Up to 70% of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, considered to be incapable of learning ability, does exhibit a memory feature transduced via epigenetic modulation. Compelling evidence shows that atherosclerotic factors promote immune cell migration by pre-activation of innate immune cells. In this project called REPROGRAM, we aim to prove that innate immune cell activation via epigenetic reprogramming perpetuates the upheld systemic inflammatory state in cardiovascular disease which is common in other chronic inflammatory diseases. This opens a new therapeutic area in which epigenetic modulation of innate immune cells effectively decreases systemic inflammation impacting on chronic inflammation as well as the development of co-morbidities. The integrated use of in vitro, ex vivo and in vivo studies, including cells, mice and patients, allows translation from in vitro mechanisms to diseases (molecule-to-man) and extrapolation to cohorts (man-to-mass), enabling us to demonstrate relevance and therapeutic potential of targeting trained immunity in cardiovascular and chronic inflammatory diseases. Enforced by the promising data in oncology, the future prospects for epigenetic interventions in cardiovascular and chronic inflammatory diseases are eminent, attested by the large residual cardiovascular disease burden and the huge societal impact of other chronic inflammatory diseases. The REPROGRAM consortium consisting of key opinion leaders in the field of cardiovascular (systems) biology, immunology, epigenetic therapies and rheumatoid arthritis, with a large intersectoral network, guarantees rapid translation of early mechanistic discoveries

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.