
Thales Alenia Space UK Ltd
Thales Alenia Space UK Ltd
7 Projects, page 1 of 2
assignment_turned_in Project2014 - 2014Partners:Systems Engineering and Assessment Ltd, Thales Alenia Space UK LtdSystems Engineering and Assessment Ltd,Thales Alenia Space UK LtdFunder: UK Research and Innovation Project Code: ST/L005328/1Funder Contribution: 9,954 GBPThe general project aims are: - Promote careers in space science and engineering to KS3 & KS4 students aged 11-16 with a particular focus on 15 year olds who are making choices about A levels; - To teach students about ongoing activities in the exploration of Mars and about the Mars surface environment; - To launch up to 200 unique student made Mars experiments to an altitude with conditions analogous to that at the Martian surface (30km altitude) and get them to analyse the results; - To publicly promote the launch and project aftermath to further spread the message, and to lay the foundations for a recurring national program. The expected overall impact includes: - Communicating the benefits of space science and engineering careers directly to students via the distributed material to encourage uptake of maths and science A-levels; - Engaging students with the concept of Mars science and exploration by tasking them to design experiments that will test the response of materials to a Mars like environment, or investigate the conditions found there; - Engaging students with the daily activities of space scientists and engineers to get them to consider a similar career; - Engaging with teachers on Mars planetary science and the potential careers paths for their students who are interested in science and engineering; - Engaging with the public on current UK Mars exploration activities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7db778ea26cd1ff37c5b107d374b13c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7db778ea26cd1ff37c5b107d374b13c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2021Partners:BAE Systems (UK), KUKA (United Kingdom), SSTL, Satellite Applications Catapult, BEIS +61 partnersBAE Systems (UK),KUKA (United Kingdom),SSTL,Satellite Applications Catapult,BEIS,International Space University,InTouch Health (United States),European Space Agency (UK),Italian Institute of Technology,Value Chain Lab (United Kingdom),ASE,CAS,UK ATOMIC ENERGY AUTHORITY,HMG,United Kingdom Atomic Energy Authority,Airbus (United Kingdom),STFC - LABORATORIES,Intel UK,STFC - Laboratories,SSTL,BAE Systems (Sweden),China Aerospace Sci and Tech Corp,Intel Corporation (UK) Ltd,Chinese Academy of Sciences,Intel UK,Airbus Defence and Space,GRL,BAE Systems (Sweden),UKSA,University of Surrey,NEPTEC UK Limited,EURATOM/CCFE,University of Surrey,Network Rail,CAS,China Aerospace Sci and Tech Corp,Chinese Academy of Sciences,Systems Engineering and Assessment Ltd,Virtual Engineering Centre (VEC),Thales Alenia Space UK Ltd,KUKA Robotics UK Limited,KUKA Robotics UK Limited,Network Rail,National Aeronautics and Space Administration,Italian Institute of Technology,GRL,Virtual Engineering Centre (VEC),Value Chain Lab Ltd,Airbus Defence and Space,Satellite Applications Catapult,Science and Technology Facilities Council,ASE,NEPTEC UK Limited,Schlumberger,EURATOM/CCFE,Surrey Satellite Technology (United Kingdom),Schlumberger (United States),STFC - Laboratories,BAE Systems (United Kingdom),NASA,International Space University,Network Rail,United Kingdom Space Agency,InTouch Health,R.U.Robots (United Kingdom),UKSAFunder: UK Research and Innovation Project Code: EP/R026092/1Funder Contribution: 7,932,510 GBPAdvances in robotics and autonomous systems are changing the way space is explored in ever more fundamental ways. Both human and scientific exploration missions are impacted by these developments. Where human exploration is concerned, robots act as proxy explorers: deploying infrastructure for human arrival, assisting human crews during in-space operations, and managing assets left behind. As humans extend their reach into space, they will increasingly rely on robots enabled by artificial intelligence to handle many support functions and repetitive tasks, allowing crews to apply themselves to problems that call for human cognition and judgment. Where scientific exploration is concerned, robotic spacecraft will continue to go out into Earth orbit and the far reaches of deep space, venturing to remote and hostile worlds, and returning valuable samples and data for scientific analysis. The aim of FAIR-SPACE is to go beyond the-state-of-the-art in robotic sensing and perception, mobility and manipulation, on-board and on-ground autonomous capabilities, and human-robot interaction, to enable space robots to perform more complex tasks on long-duration missions with minimal dependence on ground crew. More intelligent and dexterous robots will be more self-sufficient, being able to detect and respond to anomalies on board autonomously and requiring far less teleoperation. The research will see novel technologies being developed for robotic platforms used in orbit or on planet surfaces, namely: future on-orbit robots tasked with repairing satellites, assembling large space telescopes, manufacturing in space, removal of space junk; and future surface robots, also known as planetary rovers, for surveying, observation, extraction of resources, and deploying infrastructure for human arrival and habitation; a further case study will target human-robot interoperability aboard the International Space Station. The research will merge the best available off-the-shelf hardware and software solutions with trail-blazing innovations and new standards and frameworks, aiming at the development of a constellation of space robotics prototypes and tools. This aims to accelerate the prototyping of autonomous systems in a scalable way, where the innovations and methodologies developed can be rapidly spun out for wide adoption in the space sector worldwide. FAIR-SPACE directly addresses two of the priorities in the Industrial Strategy Green Paper: robotics & artificial intelligence and satellite & space technologies. The clear commitment offered by the industrial partners demonstrates the need for establishing a national asset that will help translate academic outputs into innovative products/services. Our impact plan will ensure we can maximise co-working with user organisations, align our work with other programmes (e.g. InnovateUK) and effectively transfer our research outputs and technology to other sectors beyond space such as nuclear, deep mining and offshore energy. FAIR-SPACE will therefore not only help in wealth creation but also help develop a robotics UK community with a leading international profile.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::47c5d86d5a2be55bcc07db9b59c192b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::47c5d86d5a2be55bcc07db9b59c192b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2023Partners:Intel (United Kingdom), HMG, NEC Telecom MODUS Ltd, PLESSEY SEMICONDUCTORS LIMITED, NMI +66 partnersIntel (United Kingdom),HMG,NEC Telecom MODUS Ltd,PLESSEY SEMICONDUCTORS LIMITED,NMI,DYNNIQ UK LTD,CSR,Technology Strategy Board,Systems Engineering and Assessment Ltd,STFC - LABORATORIES,General Dynamics (United Kingdom),Thales Alenia Space UK Ltd,Imagination Technologies (United Kingdom),Thales (United Kingdom),Renishaw plc (UK),ARM Ltd,ARM (United Kingdom),ICERA Inc,STFC - Laboratories,DYNNIQ UK LTD,Airbus Group Limited (UK),University of Bristol,Imagination Technologies (United Kingdom),General Electric (United Kingdom),TREL,BT Group (United Kingdom),MBDA UK Ltd,ARM Ltd,EADS Airbus,CSR,Thales Research and Technology UK Ltd,Imagination Technologies Ltd UK,RENISHAW,Provision Communications Ltd,GCHQ,RENISHAW,NEC Telecom MODUS Ltd,ARM Ltd,TREL,PicoChip Designs Limited,TRTUK,CSR plc,TRTUK,Defence Science & Tech Lab DSTL,Science and Technology Facilities Council,Toshiba Research Europe Limited,PLESSEY SEMICONDUCTORS LIMITED,Provision Communications Ltd,Digital Communications - KTN,Airbus (United Kingdom),NMI (National Microelectronics Inst),MBDA UK Ltd,Defence Science & Tech Lab DSTL,NEC Telecom MODUS Ltd,Qualcomm (United Kingdom),Defence Science and Technology Laboratory,BT Innovate,EADS Airbus,Nvidia (United Kingdom),MBDA (United Kingdom),GCHQ,Her Majesty's Government Communications Centre,Plessey Semiconductors Ltd,BT Innovate,Provision Communications Ltd,NMI,Renishaw (United Kingdom),STFC - Laboratories,University of Bristol,Defence Science & Tech Lab DSTL,Toshiba (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I028153/1Funder Contribution: 2,213,560 GBPThe Communications sector is a vital component within the UK economy, with revenues in this area totalling around 129B. Recognised as a key enabler of telecommunications, broadcasting and ICT, communications is also poised to be a transformational technology in areas such as energy, the environment, health and transport. The UK is well placed to reap the full economic and social benefits enabled by communications and investment in a CDT, embracing the breath and reach of the discipline, will help to facilitate our economic recovery and growth and enhance our global standing.There is a serious and growing concern over the future availability of suitably skilled staff to work in the communications sector in the UK. International competition is fierce, with large investments being made by competitor countries in research and in the training of personnel. IT and telecoms companies in the UK are reporting difficulties in attracting candidates with the right skills. In this context, the National Microelectronics Institute and the IET have warned that the ICT sector is facing a growing recruitment crisis with little confidence that the problem will improve in the short or medium term. Various organisations (eg DC-KTN and Royal Academy of Engineering) with support from industry are addressing this issue but acknowledge that it cannot be achieved without relevant high quality under- and postgraduate degrees through which specialist skills can be obtained.To address this shortage, a new Centre for Doctoral Training (CDT) in 'Future Communication' is proposed. The University of Bristol has a world leading reputation in this field, focused on its Centre for Communications Research (CCR), but built on close collaboration between colleagues from Mathematics, Computer Science, Safety Systems and industry. Our vision is to establish a world-leading research partnership which is focused on demand and firmly footed in a commercial context, but with freedom to conduct academically lead blue skies research.The Bristol CDT will be focused on people: not just as research providers, but also as technology consumers and, importantly, as solutions to the UK skills shortage. It will develop the skilled entrepreneurial engineers of the future, provide a coherent advanced training network for the communications community that will be recognised internationally and produce innovative solutions to key emerging research challenges. Over the next eight years, the CDT will build on Bristol's core expertise in Efficient Systems and Enabling Technologies to engineer novel solutions, offering enhanced performance, lower cost and reduced environmental impact. The taught component of the Programme will build on our MSc programme in Communication Systems & Signal Processing, acknowledged as leading in the UK, complemented by additional advanced material in statistics, optimisation and Human-Computer Interaction. This approach will leverage existing commitment and teaching expertise. Enterprise will form a core part of the programme, including: Project Management, Entrepreneurship, Public Communication, Marketing and Research Methods. Through its research programme and some 50 new PhD students, the CDT will undertake fundamental work in communication theory, optimisation and reliability. This will be guided by the commercial imperatives from our industry partners, and motivated by application drivers in Smart Grid, transport, healthcare, military/homeland security, safety critical systems and multimedia delivery. While communications technology is the enabler it is humans that are the consumers, users and beneficiaries in terms of its broader applications. In this respect we will focus our research programme on the challenges within and interactions between the key domains of People, Power and Performance.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57d6baa1a3127a9e0ece83a3aa9e393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57d6baa1a3127a9e0ece83a3aa9e393a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2019Partners:Heriot-Watt University, Arralis Ltd, National Aeronautics and Space Administration, Systems Engineering and Assessment Ltd, Thales Alenia Space UK Ltd +4 partnersHeriot-Watt University,Arralis Ltd,National Aeronautics and Space Administration,Systems Engineering and Assessment Ltd,Thales Alenia Space UK Ltd,Arralis Ltd,Heriot-Watt University,Heriot-Watt University,NASAFunder: UK Research and Innovation Project Code: EP/P025129/1Funder Contribution: 234,442 GBPThe vision of this project is to optimise the exploitation of space borne resources in future heterogeneous wireless comms systems by accelerating the deployment of new and higher mm-wave frequency bands for high data rate gateway links between satellite platforms and the terrestrial communication infrastructure. This will be achieved by virtue of a pioneering study that brings together expertise on wireless and satellite communication systems, mm-wave electronics and antennas, atmospheric propagation and digital channel modelling and characterisation. The urgent priority for new mm-wave bands in emerging sitcom systems is evidenced by ESA's TDP#5 mission involving a Q-band (38 GHz) beacon on board the ALPHASAT satellite, which provides a unique opportunity to experimentally characterise atmospheric fading at this frequency. Our world-leading consortium has exclusive access to all three UK-based receive ground stations for this mission as well as exclusive access to meteorological (incl. rain radar) and radiometric data at zero cost to the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c996a7adc2419e1c71a2c2876b7768b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c996a7adc2419e1c71a2c2876b7768b8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2013Partners:Heriot-Watt University, Heriot-Watt University, Systems Engineering and Assessment Ltd, Thales Alenia Space UK Ltd, Heriot-Watt UniversityHeriot-Watt University,Heriot-Watt University,Systems Engineering and Assessment Ltd,Thales Alenia Space UK Ltd,Heriot-Watt UniversityFunder: UK Research and Innovation Project Code: EP/H012354/1Funder Contribution: 120,989 GBPThis proposal aims at studying new techniques for detection and classification of targets underwater using 3D and texture analysis. On simple seabed types such as flat sand, it is very easy to detect and classify targets. It becomes much more difficult when the seabed is either highly cluttered with rocky or coral structures, marine life such as seaweed or is of a complex nature (large rocky outcrops and sand dunes). In those areas, classical target detection and classification techniques fails as they tend to concentrate on the shape of the target, classically recovered using shadow analysis (the acoustic shadow is casted by the target on the seabed). On the other hand, the analysis of the target echo is difficult for classical high resolution sonars as they are susceptible to speckle noise and in general not resolved enough for classification. Detection and classification in such challenging scenarios can be improved by detectiing the targets as an outlier in the current texture field. This can be done using 2D or 3D texture measures but as most strong textures are due to the 3D nature of the seabed, we believe that 3D texture analysis will be more effective and therefore propose to focus on these. Classification can be addressed with the development of new higher resolution sonars (SAS) and new 3D sonars (Interferometric SAS / Side Scan). As resolution increases, the structure of the echo will become more apparent and techniques developed in the machine vision and pattern recognition communities can be used. This is the secondary objective of this proposal.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ed23925e6bbf8867503707db729a947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ed23925e6bbf8867503707db729a947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right