
Shell Global Solutions UK
Shell Global Solutions UK
56 Projects, page 1 of 12
assignment_turned_in Project2009 - 2013Partners:Sasol (South Africa), University of Leeds, Shell Global Solutions UK, Shell Global Solutions UK, Shell (United Kingdom) +4 partnersSasol (South Africa),University of Leeds,Shell Global Solutions UK,Shell Global Solutions UK,Shell (United Kingdom),University of Leeds,Shell Global Solutions UK,Sasol Technology,Sasol TechnologyFunder: UK Research and Innovation Project Code: EP/G068933/1Funder Contribution: 396,550 GBPSustainable and secure fuels for road and air transport are essential to the vitality of both western and developing economies. Novel alternative fuels and supplies are required to meet the global challenges of declining oil reserves and concerns over the security of remaining supplies, as well as the enviromental imperative for greener fuels to offset CO2 generation. Liquid fuels offer the highest energy density for transportation applications and Synthetic liquid fuels, which can be produced from renewable and non-food bio feedstocks as well as solid and gaseous fuel supplies, offer exciting possibilities for partial or even total substitution of remaining fossil fuel supplies. There is a growing international interest in synthetic jet-fuels, for example, with the Fischer-Tropsch process central to their production. South Africa are pioneers and international leaders in the F-T process. The behaviour of these new fuels must be fully characterised and understood if they are to be widely employed and technologies developed for their effective deployment. This proposal relates to the vital and inter-related fuel characteristics of autoignition and burning velocity. In this collaboration with internationally leading South African synthetic fuels researchers at the University of Cape Town, these fundamental characteristics will be experimentally determined for both synthetic kerosenes, to be used in aviation jet-fuels, and synthetic gasolines for road transporation.The project also includes mathematical and computational modelling employing the data generated from the experimental studies, including on how autoignition and gas motion couple to generate pressure waves and pressure oscillations and engine cycle models to predict the performance and knock properties of synthetic fuels.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6b4b4efb8eca6835e4fbcb888e55c662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6b4b4efb8eca6835e4fbcb888e55c662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2022Partners:NPL, Shell Global Solutions UK, NPL, CDT, COSTAIN LTD +21 partnersNPL,Shell Global Solutions UK,NPL,CDT,COSTAIN LTD,Nokia Research Centre,Shell (United Kingdom),National Physical Laboratory,Alphasense Ltd,Costain (United Kingdom),Alphasense Ltd,Shell Global Solutions UK,Shell Global Solutions UK,University of Cambridge,Rolls-Royce (United Kingdom),Rolls-Royce (United Kingdom),University of Cambridge,Alphasense Ltd,Rolls-Royce (United Kingdom),UNIVERSITY OF CAMBRIDGE,CDT,Nokia Research Centre (UK),COSTAIN LTD,Nokia Research Centre,Rolls-Royce Plc (UK),Cambridge Display Technology Ltd (CDT)Funder: UK Research and Innovation Project Code: EP/L015889/1Funder Contribution: 3,846,170 GBPAnalysis and diagnosis, the core elements of sensing, are highlighted by almost every initiative for health, environment, security and quality of life. Sensors have advanced to an extent that they are sought for many applications in manufacturing and detection segments, and their cost advantages have boosted their utility and demand. The pillars of sensor research are in highly diverse fields and traditional single-discipline research is particularly poor at catalysing sensor innovation and application, as these typically fall in the 'discipline gaps'. Furthermore, the underpinning technology is advancing at a phenomenal pace. These developments are creating exciting opportunities, but also enormous challenges to UK academia and industry: Traditional PhD programmes are centred on individuals and focused on narrowly defined problems and do not produce the skills and leadership qualities required to capitalise on future opportunities. Industry complains that skills are waning and sensors are increasingly being treated as 'black boxes' without an understanding of underlying principles. We propose to establish the EPSRC Centre for Doctoral Training in Sensor Technologies and Measurement to address these problems head on. The CDT will provide a co-ordinated programme of training in research-, team-, and leadership-skills to future generations of sensor champions. The CDT will build on the highly successful CamBridgeSens research network which was previously funded by the EPSRC under its discipline-bridging programme and which has transformed the culture in which sensor research is being carried out at our University, breaking down discipline barriers, and bringing together world-leading expertise, infrastructure and people from more than 20 Departments. The CDT will now extend this culture to the training of future sensor researchers to generate a virtual super department in Cambridge with more than 70 PIs. The programme will be underpinned by a consortium of industrial partners which is strongly integrated into the CDT and through its needs and engagement will inform the direction of the programme. In the first year of their 4 year PhD programme, student cohorts will attend specialised lectures, practicals and research mini-projects, to receive training in a range of topics underpinning sensor research, including physical principles of sensor hardware, acquisition and interpretation of sensory information, and user requirements of sensor applications. Team-building aspects will be strongly emphasised, and through an extended sensor project treated as a team challenge in the first year of their programme, the students will together, as a cohort, face a problem of industrial relevance and learn how to address a research problem as a team rather than individually. The cohorts will be supported by a mix of academic and industrial mentors, and will receive business, presentation and project-management skills. During years 2 to 4 of their PhD course, students will pick a PhD topic offered by the more than 70 PIs participating in the programme. Each topic on offer will be supervised by at least two academics from different departments/disciplines and may include industrial partners in the CDT. Throughout, we will create strong identities for the sensor student cohorts through a number of people-based activities that maximise engagement between researchers, research activities and that bridge gaps across disciplines, Departments and research cultures.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fd7ea7fcb93d499447aefacba35a35fe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fd7ea7fcb93d499447aefacba35a35fe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2027Partners:Jaguar Cars, MIRA (United Kingdom), Ashwoods Automotive (United Kingdom), Horiba Mira Ltd, HiETA Technologies Ltd +29 partnersJaguar Cars,MIRA (United Kingdom),Ashwoods Automotive (United Kingdom),Horiba Mira Ltd,HiETA Technologies Ltd,SAIC Motor UK Technical Centre Ltd,Ford Motor Company (United Kingdom),Smart Manufacturing Technology Ltd (UK),Shell Global Solutions UK,Bath Spa University,BJTU,Shell (United Kingdom),JAGUAR LAND ROVER LIMITED,AVL List GmbH,Horiba UK Ltd,Shell Global Solutions UK,Tata Motors (United Kingdom),HiETA Technologies (United Kingdom),University of Bath,BJTU,Shell Global Solutions UK,SAIC Motor (United Kingdom),Horiba Mira Ltd,FORD MOTOR COMPANY LIMITED,McLaren Applied Technologies,Ashwoods Automotive Ltd,Jaguar Cars,University of Bath,HORIBA Jobin Yvon IBH Ltd,HORIBA Jobin Yvon IBH Ltd,Smart Manufacturing Technology Ltd (UK),FORD MOTOR COMPANY LIMITED,McLaren Honda (United Kingdom),Anstalt für Verbrennungskraftmaschinen ListFunder: UK Research and Innovation Project Code: EP/S023364/1Funder Contribution: 6,225,850 GBPThe CDT in Advanced Automotive Propulsion Systems will produce the graduates who will bring together the many technical disciplines and skills needed to allow propulsion systems to transition to a more sustainable future. By creating an environment for our graduates to research new propulsion systems and the wider context within which they sit, we will form the individuals who will lead the scientific, technological, and behavioural changes required to effect the transformation of personal mobility. The CDT will become an internationally leading centre for interdisciplinary doctoral training in this critical field for UK industrial strategy. We will train a cohort of 84 high quality research leaders, adding value to academia and the UK automotive industry. There are three key aspects to the success of the CDT - First, a diverse range of graduates will be recruited from across the range of first degrees. Graduates in engineering (mechanical, electrical, chemical), sciences (physics, chemistry, mathematics, biology), management and social sciences will be recruited and introduced to the automotive propulsion sector. The resulting skills mix will allow transformational research to be conducted. Second, the training given to this cohort, re-enforced by a strong group working ethos, will prepare the graduates to make an effective contribution to the industry. This will require training in the current and future methods (technical and commercial) used by the industry. We also need the graduates to have highly developed interpersonal skills and to be experienced in effective group working. Understanding how people and companies work is just as important as an understanding the technology. On the technology side, a broad system level understanding of the technology landscape and the relationship between the big picture and the graduate's own expertise is essential. We have designed a programme that enriches the student's knowledge and experience in these key areas. Third, underpinning all of these attributes will be the graduate's research skills, acquired through the undertaking of an intensive research project within the new £60 million Institute for Advanced Automotive Propulsion Systems (IAAPS), designed from the outset to provide a rich collaborative environment and add value to the UK economy. IAAPS will be equipped with world leading experimental facilities designed for future powertrain systems and provides dedicated space for industry and academia to collaborate to deliver research valued at over £100 million during the lifetime of the CDT. The cohort will contribute to and benefit from this knowledge development, providing opportunities to conduct research at a whole system level. This will address one of the most pressing challenges of our age - the struggle to provide truly sustainable, affordable, connected, zero emissions transport needed by both industrialised and emerging economies. To enable these benefits we request funding for 40 studentships and the infrastructure to provide a world class training environment. The university will enhance this through the funding of an additional 20 studentships and access to research facilities, together valued at £5 million. Cash and in-kind contributions from industrial partners valued at a total of £4.5 million will enhance the student experience, providing 9 fully funded PhD places and 30 half funded places. The research undertaken by the students will be co-created and supervised by our industrial partners. The people and research outputs that from the CDT will be adopted directly by these industrial partners to generate lasting real world impact.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1074b5d592f4c88cba67833f58868515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1074b5d592f4c88cba67833f58868515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2016Partners:University of Cambridge, Shell Global Solutions UK, Shell (United Kingdom), Shell Global Solutions UK, UNIVERSITY OF CAMBRIDGE +2 partnersUniversity of Cambridge,Shell Global Solutions UK,Shell (United Kingdom),Shell Global Solutions UK,UNIVERSITY OF CAMBRIDGE,University of Cambridge,Shell Global Solutions UKFunder: UK Research and Innovation Project Code: EP/I01165X/1Funder Contribution: 541,230 GBPParticulate Matter emissions are important for the health of both our planet and its population. Legislation on Particulate Matter (PM) is increasingly stringent and subject to the greatest change. However, Particulate Matter emissions are both the most difficult to measure and the most challenging to model. In simple terms, Particulate Matter is essentially soot (carbon) onto which species such as unburned hydrocarbons are adsorbed, and is intrinsic to all combustion processes.PM has been linked to global warming and serious epidemiological issues, and this has led to much regulation. Of greatest concern are the sub-micron particles that are invisible, yet it is these small particles that have the greatest deposition efficiency in the human respiratory system. While society is not yet able to replace combustion, technological developments can seek to minimise PM emissions.The complexity of measuring and modelling PM emissions means that modellers are dependent on published experimental data which can be old and incomplete. Furthermore, the modellers have no opportunity to specify the experiments. We have already collaborated on an informal basis, but without specific funding this has been very restricted. The integrated approach in this project will enable the modellers to specify the experiments, identify the most important measurements, and create a database that can be populated with the relevant experimental data. This will provide the modellers with immediate access to complete data.Oxford has a spark ignition engine with comprehensive optical access, and a range of burners: pre-mixed flat-flame (McKenna type), and co-flow (Santoro type, diffusion flame). Mass flow controllers allow us to vary the equivalence ratio of the core flow (pure fuel to the weak limit, with a choice of diluents) and the composition and flow of the annular flow (oxygen enriched or depleted air). The same fuels can be used in both the engine and burners, and in both cases the fuel composition can be controlled Measurement Capabilities - Oxford has a mix of proprietary and unique equipment for PM measurements. We can measure size distributions, mass loadings, composition, morphology and surface area. We also have a unique Differential Mobility Analyser that allows size segregation prior to PM characterisation. We have techniques for measuring temperature, as this has been identified by the modellers as of paramount importance. Most significantly, we will apply the novel technique - Laser Induced Grating Spectroscopy, LIGS temperature measurements of high accuracy and precision. In LIGS, the coherent, laser-like signal beam offers high discrimination against background scattering and luminosity to give a good signal-to-noise ratio in sooting flames. Potential exists for developing a transportable instrument for thermometry of flames in laboratory or technical combustion systems such as engines, gas turbines, incinerators etc.Computational modelling - Cambridge will create and improve computational models which describe combustion chemistry and soot particle formation. Combustion chemistry involves thousands of chemical reactions; the model must contain enough detail to describe the species which are important but must be concise enough to make numerical evaluation possible. Such models exist, but contain many parameters which need further refinement via experimental data. Modelling the formation and growth of soot particles is even more challenging. The chemical reactions between gas phase species and particle surfaces have to be combined with a population balance model to predict the particle mass and size. Eventually a detailed particle and chemistry model must be included in an engine model. These models are to be used to understand the mechanism of particle formation in an engine further and with this find operating modes which reduce particle formation and increase the efficiency of the engine.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::be48d598345119f389033ae1d1b3d1d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::be48d598345119f389033ae1d1b3d1d2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2027Partners:Rolls-Royce (United Kingdom), NTU, SMRE, Johnson Matthey, MCA +52 partnersRolls-Royce (United Kingdom),NTU,SMRE,Johnson Matthey,MCA,Westport Power Inc.,HMG,Dolphin N2,BP INTERNATIONAL LIMITED,Maritime and Coastguard Agency,Health and Safety Executive,Quantum ES,Wavespec,Shell Global Solutions UK,DfT,Rolls-Royce (United Kingdom),Johnson Matthey (United Kingdom),Dolphin N2,Wavespec,MAHLE Powertrain Ltd,LR IMEA,Pacific Green Technologies Group,Cummins Power Generation Limited,Shell (United Kingdom),Pacific Green Technologies Group,Westport Power Inc.,BMT Defence Services,Shell Global Solutions UK,Coryton Advanced Fuels,MAHLE Powertrain,BMT Defence Services Ltd,Quantum ES,Infineum UK,SMRE,Ricardo (United Kingdom),MCA,Shell Global Solutions UK,Connected Places Catapult,BMT Defence Services,Coryton Advanced Fuels,Lloyd's Register Foundation,Ricardo (United Kingdom),Rolls-Royce Plc (UK),Infineum UK,LR IMEA,MAHLE Powertrain,Infineum (United Kingdom),University of Nottingham,Connected Places Catapult,Johnson Matthey Plc,BP (United Kingdom),BP International Limited,Rolls-Royce (United Kingdom),Cummins Power Generation Limited,Ricardo (United Kingdom),Health and Safety Executive (HSE),BMT Group (United Kingdom)Funder: UK Research and Innovation Project Code: EP/W016656/1Funder Contribution: 5,508,860 GBPBattery electrified power is predicted to become the dominant mode of propulsion in future light duty transport. For sustainable heavy duty applications challenges remain around practical range, payload and total cost. Currently there is no economically viable single solution. For commercial marine vessels the problem is compounded by long service lives, with bulk carriers, tankers and container ships the main contributors to greenhouse gases. Ammonia (NH3) has excellent potential to play a significant role as a sustainable future fuel in both retrofitted and advanced engines. However, significant uncertainties remain around safe and effective end use, with these unknowns spanning across fundamental understanding, effective application and acceptance. This multi-disciplinary programme seeks to overcome the key related technical, economic and social unknowns through flexible, multidisciplinary research set around disruptive NH3 engine concepts capable of high thermal efficiency and ultra low NOx. The goal is to accelerate understanding, technologies and ultimately policies which are appropriately scaled and "right first time".
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a08b869dca7a9bef9eabb8ff3a9b229e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a08b869dca7a9bef9eabb8ff3a9b229e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right