Powered by OpenAIRE graph
Found an issue? Give us feedback

RISE - Research Institutes of Sweden AB

RISE - Research Institutes of Sweden AB

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/V026763/1
    Funder Contribution: 3,011,800 GBP

    Autonomous Systems (AS) are cyberphysical complex systems that combine artificial intelligence with multi-layer operations. Security for dynamic and networked ASs has to develop new methods to address an uncertain and shifting operational environment and usage space. As such, we have developed an ambitious program to develop fundamental secure AS research covering both the technical and social aspects of security. Our research program is coupled with internationally leading test facilities for AS and security, providing a research platform for not only this TAS node, but the whole TAS ecosystem. To enhance impact, we have built a partnership with leading AS operators in the UK and across the world, ranging from industrial designers to frontline end-users. Our long-term goal is to translate the internationally leading research into real-world AS impact via a number of impact pathways. The research will accelerate UK's position as a leader in secure AS research and promote a safer society.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M002500/1
    Funder Contribution: 818,238 GBP

    Breakthroughs in the development of new materials have historically been achieved largely by trial and error. My vision is that there is a new generation of advanced hierarchical materials that has never been addressed and can be achieved by design. This new generation draws inspiration both from recent experimental observations in existing materials and from biomimetics, and is made possible by recent advances in modelling and manufacturing. The main challenges faced by today's composites industry include (i) damage tolerance, (ii) manufacturability and (iii) sustainability. I argue that (i) hierarchical micro-structural designs for composites will be more damage tolerant and achieve over 100% increase in fracture toughness, (ii) that hierarchical discrete carbon-fibre systems will simultaneously address manufacturing and performance needs of the automotive industry, and (iii) that recycled carbon fibres will find a high-value market as semi-structural parts by also exploiting hierarchical architectures. My proposal is to define these hierarchical micro-structures by design and to then develop suitable manufacturing methods to realise them in practice.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.